Optimization of the Norm of a Vector-Valued DC Function and Applications
Author
Abstract
Suggested Citation
DOI: 10.1023/A:1026433520314
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- R. Horst & N. V. Thoai, 1999. "DC Programming: Overview," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 1-43, October.
- Y. P. Aneja & M. Parlar, 1994. "Technical Note—Algorithms for Weber Facility Location in the Presence of Forbidden Regions and/or Barriers to Travel," Transportation Science, INFORMS, vol. 28(1), pages 70-76, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Blanquero, R. & Carrizosa, E. & Hendrix, E.M.T., 2011. "Locating a competitive facility in the plane with a robustness criterion," European Journal of Operational Research, Elsevier, vol. 215(1), pages 21-24, November.
- Rafael Blanquero & Emilio Carrizosa, 2010. "On the norm of a dc function," Journal of Global Optimization, Springer, vol. 48(2), pages 209-213, October.
- Hoai An Le Thi & Vinh Thanh Ho & Tao Pham Dinh, 2019. "A unified DC programming framework and efficient DCA based approaches for large scale batch reinforcement learning," Journal of Global Optimization, Springer, vol. 73(2), pages 279-310, February.
- Rafael Blanquero & Emilio Carrizosa & Pierre Hansen, 2009. "Locating Objects in the Plane Using Global Optimization Techniques," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 837-858, November.
- Rafael Blanquero & Emilio Carrizosa, 2013. "Solving the median problem with continuous demand on a network," Computational Optimization and Applications, Springer, vol. 56(3), pages 723-734, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
- Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
- Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
- João Carlos O. Souza & Paulo Roberto Oliveira & Antoine Soubeyran, 2016. "Global convergence of a proximal linearized algorithm for difference of convex functions," Post-Print hal-01440298, HAL.
- Boglárka G.-Tóth & Kristóf Kovács, 2016. "Solving a Huff-like Stackelberg location problem on networks," Journal of Global Optimization, Springer, vol. 64(2), pages 233-247, February.
- Malgorzata Miklas-Kalczynska & Pawel Kalczynski, 2024. "Multiple obnoxious facility location: the case of protected areas," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
- Aras Selvi & Aharon Ben-Tal & Ruud Brekelmans & Dick den Hertog, 2022. "Convex Maximization via Adjustable Robust Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2091-2105, July.
- Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
- J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020.
"A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem,"
Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
- J. Cruz Neto & P. Oliveira & Antoine Soubeyran & J. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Post-Print hal-01985336, HAL.
- M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
- Andreas Löhne & Andrea Wagner, 2017. "Solving DC programs with a polyhedral component utilizing a multiple objective linear programming solver," Journal of Global Optimization, Springer, vol. 69(2), pages 369-385, October.
- H. W. Hamacher & S. Nickel, 1995. "Restricted planar location problems and applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 967-992, September.
- N. V. Thoai, 2000. "Duality Bound Method for the General Quadratic Programming Problem with Quadratic Constraints," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 331-354, November.
- Zhili Ge & Zhongming Wu & Xin Zhang & Qin Ni, 2023. "An extrapolated proximal iteratively reweighted method for nonconvex composite optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 821-844, August.
- Stephan Dempe & Felix Harder & Patrick Mehlitz & Gerd Wachsmuth, 2019. "Solving inverse optimal control problems via value functions to global optimality," Journal of Global Optimization, Springer, vol. 74(2), pages 297-325, June.
- Jean-Paul Penot, 2011. "The directional subdifferential of the difference of two convex functions," Journal of Global Optimization, Springer, vol. 49(3), pages 505-519, March.
- Jin, Zhong & Y. Gao, David, 2017. "On modeling and global solutions for d.c. optimization problems by canonical duality theory," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 168-181.
- Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.
- Xiangyang Huang & LiGuo Huang, 2023. "Spreading Points Using Gradient and Tabu," SN Operations Research Forum, Springer, vol. 4(2), pages 1-11, June.
- David Wozabal, 2012. "A framework for optimization under ambiguity," Annals of Operations Research, Springer, vol. 193(1), pages 21-47, March.
More about this item
Keywords
global optimization; difference of convex functions; location theory; multiple-criteria decision making;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:107:y:2000:i:2:d:10.1023_a:1026433520314. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.