IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v182y2019i1d10.1007_s10957-018-1352-z.html
   My bibliography  Save this article

New Farkas-Type Results for Vector-Valued Functions: A Non-abstract Approach

Author

Listed:
  • Nguyen Dinh

    (International University, Vietnam National University-HCM)

  • Miguel A. Goberna

    (University of Alicante)

  • Dang H. Long

    (VNUHCM-University of Science
    Tien Giang University)

  • Marco A. López-Cerdá

    (University of Alicante
    Federation University)

Abstract

This paper provides new Farkas-type results characterizing the inclusion of a given set, called contained set, into a second given set, called container set, both of them are subsets of some locally convex space, called decision space. The contained and the container sets are described here by means of vector functions from the decision space to other two locally convex spaces which are equipped with the partial ordering associated with given convex cones. These new Farkas lemmas are obtained via the complete characterization of the conic epigraphs of certain conjugate mappings which constitute the core of our approach. In contrast with a previous paper of three of the authors (Dinh et al. in J Optim Theory Appl 173:357–390, 2017), the aimed characterizations of the containment are expressed here in terms of the data.

Suggested Citation

  • Nguyen Dinh & Miguel A. Goberna & Dang H. Long & Marco A. López-Cerdá, 2019. "New Farkas-Type Results for Vector-Valued Functions: A Non-abstract Approach," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 4-29, July.
  • Handle: RePEc:spr:joptap:v:182:y:2019:i:1:d:10.1007_s10957-018-1352-z
    DOI: 10.1007/s10957-018-1352-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1352-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1352-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Dinh & G. Vallet & M. Volle, 2014. "Functional inequalities and theorems of the alternative involving composite functions," Journal of Global Optimization, Springer, vol. 59(4), pages 837-863, August.
    2. Fabián Flores-Bazán & Fernando Flores-Bazán & Sigifredo Laengle, 2015. "Characterizing Efficiency on Infinite-dimensional Commodity Spaces with Ordering Cones Having Possibly Empty Interior," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 455-478, February.
    3. David Bartl, 2012. "A very short algebraic proof of the Farkas Lemma," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 75(1), pages 101-104, February.
    4. N. Dinh & V. Jeyakumar, 2014. "Rejoinder on: Farkas’ lemma: three decades of generalizations for mathematical optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 41-44, April.
    5. N. Dinh & M. A. Goberna & M. A. López & T. H. Mo, 2017. "Farkas-Type Results for Vector-Valued Functions with Applications," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 357-390, May.
    6. N. Dinh & V. Jeyakumar, 2014. "Farkas’ lemma: three decades of generalizations for mathematical optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nithirat Sisarat & Rabian Wangkeeree & Gue Myung Lee, 2020. "On Set Containment Characterizations for Sets Described by Set-Valued Maps with Applications," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 824-841, March.
    2. Nguyen Dinh & Dang Hai Long, 2022. "A Perturbation Approach to Vector Optimization Problems: Lagrange and Fenchel–Lagrange Duality," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 713-748, August.
    3. Xiaopeng Zhao & Markus A. Köbis & Yonghong Yao & Jen-Chih Yao, 2021. "A Projected Subgradient Method for Nondifferentiable Quasiconvex Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 82-107, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Dinh & M. A. Goberna & M. A. López & T. H. Mo, 2017. "Farkas-Type Results for Vector-Valued Functions with Applications," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 357-390, May.
    2. Nguyen Dinh & Dang Hai Long, 2022. "A Perturbation Approach to Vector Optimization Problems: Lagrange and Fenchel–Lagrange Duality," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 713-748, August.
    3. D. H. Fang & Y. Zhang, 2018. "Extended Farkas’s Lemmas and Strong Dualities for Conic Programming Involving Composite Functions," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 351-376, February.
    4. P. Montiel López & M. Ruiz Galán, 2016. "Nonlinear Programming via König’s Maximum Theorem," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 838-852, September.
    5. Thai Doan Chuong & Vaithilingam Jeyakumar, 2020. "Generalized Farkas Lemma with Adjustable Variables and Two-Stage Robust Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 488-519, November.
    6. Meijia Yang & Shu Wang & Yong Xia, 2022. "Toward Nonquadratic S-Lemma: New Theory and Application in Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 353-363, July.
    7. Shiva Kapoor & C. S. Lalitha, 2021. "Essential stability in unified vector optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 161-175, May.
    8. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    9. Shiva Kapoor & C. S. Lalitha, 2019. "Stability and Scalarization for a Unified Vector Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1050-1067, September.
    10. Khushboo & C. S. Lalitha, 2019. "A unified minimal solution in set optimization," Journal of Global Optimization, Springer, vol. 74(1), pages 195-211, May.
    11. Shiva Kapoor & C. S. Lalitha, 2019. "Stability in unified semi-infinite vector optimization," Journal of Global Optimization, Springer, vol. 74(2), pages 383-399, June.
    12. Nithirat Sisarat & Rabian Wangkeeree & Gue Myung Lee, 2020. "On Set Containment Characterizations for Sets Described by Set-Valued Maps with Applications," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 824-841, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:182:y:2019:i:1:d:10.1007_s10957-018-1352-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.