IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v176y2018i3d10.1007_s10957-018-1224-6.html
   My bibliography  Save this article

An Incremental Subgradient Method on Riemannian Manifolds

Author

Listed:
  • Peng Zhang

    (Harbin Institute of Technology)

  • Gejun Bao

    (Harbin Institute of Technology)

Abstract

In this paper, we propose and analyze an incremental subgradient method with a diminishing stepsize rule for a convex optimization problem on a Riemannian manifold, where the object function consisted of the sum of a large number of component functions. This type of function is useful in lots of fields. We establish an important inequality about the sequence generated by the method, provided the sectional curvature of the manifold is nonnegative. Using the inequality, we prove Proposition 3.1, and then we obtain some convergence results of the incremental subgradient method.

Suggested Citation

  • Peng Zhang & Gejun Bao, 2018. "An Incremental Subgradient Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 711-727, March.
  • Handle: RePEc:spr:joptap:v:176:y:2018:i:3:d:10.1007_s10957-018-1224-6
    DOI: 10.1007/s10957-018-1224-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1224-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1224-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. X. Cruz Neto & O. P. Ferreira & P. R. Oliveira & R. C. M. Silva, 2008. "Central Paths in Semidefinite Programming, Generalized Proximal-Point Method and Cauchy Trajectories in Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 227-242, November.
    2. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    3. O. P. Ferreira & P. R. Oliveira, 1998. "Subgradient Algorithm on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 97(1), pages 93-104, April.
    4. M. V. Solodov & S. K. Zavriev, 1998. "Error Stability Properties of Generalized Gradient-Type Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 663-680, September.
    5. O. Ferreira & A. Iusem & S. Németh, 2014. "Concepts and techniques of optimization on the sphere," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 1148-1170, October.
    6. Glaydston C. Bento & Jefferson G. Melo, 2012. "Subgradient Method for Convex Feasibility on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 773-785, March.
    7. J. H. Wang & G. López & V. Martín-Márquez & C. Li, 2010. "Monotone and Accretive Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 691-708, September.
    8. G. C. Bento & O. P. Ferreira & P. R. Oliveira, 2012. "Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 88-107, July.
    9. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    10. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    11. J. H. Wang, 2011. "Convergence of Newton’s Method for Sections on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 148(1), pages 125-145, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    2. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    3. Glaydston C. Bento & Orizon P. Ferreira & Jefferson G. Melo, 2017. "Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 548-562, May.
    4. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    5. J. X. Cruz Neto & F. M. O. Jacinto & P. A. Soares & J. C. O. Souza, 2018. "On maximal monotonicity of bifunctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 72(3), pages 591-601, November.
    6. Glaydston Carvalho Bento & João Xavier Cruz Neto & Paulo Roberto Oliveira, 2016. "A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 743-755, March.
    7. Glaydston C. Bento & Jefferson G. Melo, 2012. "Subgradient Method for Convex Feasibility on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 773-785, March.
    8. G. C. Bento & J. X. Cruz Neto & P. S. M. Santos, 2013. "An Inexact Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 108-124, October.
    9. J. Souza & P. Oliveira, 2015. "A proximal point algorithm for DC fuctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 63(4), pages 797-810, December.
    10. G. C. Bento & O. P. Ferreira & P. R. Oliveira, 2012. "Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 88-107, July.
    11. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    12. X. M. Wang & J. H. Wang & C. Li, 2023. "Convergence of Inexact Steepest Descent Algorithm for Multiobjective Optimizations on Riemannian Manifolds Without Curvature Constraints," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 187-214, July.
    13. Ítalo Dowell Lira Melo & João Xavier Cruz Neto & José Márcio Machado Brito, 2022. "Strong Convergence of Alternating Projections," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 306-324, July.
    14. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    15. Orizon P. Ferreira & Mauricio S. Louzeiro & Leandro F. Prudente, 2020. "Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 507-533, February.
    16. G. C. Bento & J. X. Cruz Neto & L. V. Meireles & A. Soubeyran, 2022. "Pareto solutions as limits of collective traps: an inexact multiobjective proximal point algorithm," Annals of Operations Research, Springer, vol. 316(2), pages 1425-1443, September.
    17. Guo-ji Tang & Nan-jing Huang, 2012. "Korpelevich’s method for variational inequality problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 54(3), pages 493-509, November.
    18. Alfredo N. Iusem & Jefferson G. Melo & Ray G. Serra, 2021. "A Strongly Convergent Proximal Point Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 183-200, July.
    19. N. Eslami & B. Najafi & S. M. Vaezpour, 2023. "A Trust Region Method for Solving Multicriteria Optimization Problems on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 212-239, January.
    20. Fabiana R. de Oliveira & Orizon P. Ferreira, 2020. "Newton Method for Finding a Singularity of a Special Class of Locally Lipschitz Continuous Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 522-539, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:176:y:2018:i:3:d:10.1007_s10957-018-1224-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.