IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v97y1998i1d10.1023_a1022675100677.html
   My bibliography  Save this article

Subgradient Algorithm on Riemannian Manifolds

Author

Listed:
  • O. P. Ferreira

    (Universidade Federal de Goiás)

  • P. R. Oliveira

    (Universidade Federal do Rio de Janeiro)

Abstract

The subgradient method is generalized to the context of Riemannian manifolds. The motivation can be seen in non-Euclidean metrics that occur in interior-point methods. In that frame, the natural curves for local steps are the geodesies relative to the specific Riemannian manifold. In this paper, the influence of the sectional curvature of the manifold on the convergence of the method is discussed, as well as the proof of convergence if the sectional curvature is nonnegative.

Suggested Citation

  • O. P. Ferreira & P. R. Oliveira, 1998. "Subgradient Algorithm on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 97(1), pages 93-104, April.
  • Handle: RePEc:spr:joptap:v:97:y:1998:i:1:d:10.1023_a:1022675100677
    DOI: 10.1023/A:1022675100677
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022675100677
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022675100677?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Glaydston C. Bento & Orizon P. Ferreira & Jefferson G. Melo, 2017. "Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 548-562, May.
    2. E. A. Papa Quiroz & P. R. Oliveira, 2007. "New Self-Concordant Barrier for the Hypercube," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 475-490, December.
    3. Dewei Zhang & Sam Davanloo Tajbakhsh, 2023. "Riemannian Stochastic Variance-Reduced Cubic Regularized Newton Method for Submanifold Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 324-361, January.
    4. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    5. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    6. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    7. Peng Zhang & Gejun Bao, 2018. "An Incremental Subgradient Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 711-727, March.
    8. da Silva Alves, Charlan Dellon & Oliveira, Paulo Roberto & Gregório, Ronaldo Malheiros, 2021. "Lα Riemannian weighted centers of mass applied to compose an image filter to diffusion tensor imaging," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    9. O. Ferreira & A. Iusem & S. Németh, 2014. "Concepts and techniques of optimization on the sphere," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 1148-1170, October.
    10. Lei Wang & Xin Liu & Yin Zhang, 2023. "A communication-efficient and privacy-aware distributed algorithm for sparse PCA," Computational Optimization and Applications, Springer, vol. 85(3), pages 1033-1072, July.
    11. Glaydston C. Bento & Jefferson G. Melo, 2012. "Subgradient Method for Convex Feasibility on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 773-785, March.
    12. Xiao-bo Li & Li-wen Zhou & Nan-jing Huang, 2016. "Gap Functions and Global Error Bounds for Generalized Mixed Variational Inequalities on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 830-849, March.
    13. Guo-ji Tang & Nan-jing Huang, 2012. "Korpelevich’s method for variational inequality problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 54(3), pages 493-509, November.
    14. Gregório, R.M. & Oliveira, P.R. & Alves, C.D.S., 2019. "A two-phase-like proximal point algorithm in domains of positivity," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 67-89.
    15. J. Souza & P. Oliveira, 2015. "A proximal point algorithm for DC fuctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 63(4), pages 797-810, December.
    16. J. X. Cruz Neto & F. M. O. Jacinto & P. A. Soares & J. C. O. Souza, 2018. "On maximal monotonicity of bifunctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 72(3), pages 591-601, November.
    17. G. C. Bento & O. P. Ferreira & P. R. Oliveira, 2012. "Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 88-107, July.
    18. João Xavier da Cruz Neto & Ítalo Dowell Lira Melo & Paulo Alexandre Araújo Sousa, 2017. "Convexity and Some Geometric Properties," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 459-470, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:97:y:1998:i:1:d:10.1023_a:1022675100677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.