IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v162y2014i2d10.1007_s10957-013-0346-0.html
   My bibliography  Save this article

A New Scalarization Technique to Approximate Pareto Fronts of Problems with Disconnected Feasible Sets

Author

Listed:
  • R. S. Burachik

    (University of South Australia)

  • C. Y. Kaya

    (University of South Australia)

  • M. M. Rizvi

    (University of South Australia)

Abstract

We introduce and analyze a novel scalarization technique and an associated algorithm for generating an approximation of the Pareto front (i.e., the efficient set) of nonlinear multiobjective optimization problems. Our approach is applicable to nonconvex problems, in particular to those with disconnected Pareto fronts and disconnected domains (i.e., disconnected feasible sets). We establish the theoretical properties of our new scalarization technique and present an algorithm for its implementation. By means of test problems, we illustrate the strengths and advantages of our approach over existing scalarization techniques such as those derived from the Pascoletti–Serafini method, as well as the popular weighted-sum method.

Suggested Citation

  • R. S. Burachik & C. Y. Kaya & M. M. Rizvi, 2014. "A New Scalarization Technique to Approximate Pareto Fronts of Problems with Disconnected Feasible Sets," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 428-446, August.
  • Handle: RePEc:spr:joptap:v:162:y:2014:i:2:d:10.1007_s10957-013-0346-0
    DOI: 10.1007/s10957-013-0346-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0346-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0346-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, X. Q. & Goh, C. J., 1997. "A method for convex curve approximation," European Journal of Operational Research, Elsevier, vol. 97(1), pages 205-212, February.
    2. Gabriele Eichfelder, 2009. "Scalarizations for adaptively solving multi-objective optimization problems," Computational Optimization and Applications, Springer, vol. 44(2), pages 249-273, November.
    3. Henri Bonnel & C. Yalçın Kaya, 2010. "Optimization Over the Efficient Set of Multi-objective Convex Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 93-112, October.
    4. Liu, Y. & Teo, K. L. & Yang, X. Q., 1999. "Approximation methods for non-convex curves," European Journal of Operational Research, Elsevier, vol. 117(1), pages 125-135, August.
    5. M. Ehrgott & S. Ruzika, 2008. "Improved ε-Constraint Method for Multiobjective Programming," Journal of Optimization Theory and Applications, Springer, vol. 138(3), pages 375-396, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brian Dandurand & Margaret M. Wiecek, 2016. "Quadratic scalarization for decomposed multiobjective optimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 1071-1096, October.
    2. G. Bento & J. Cruz Neto & G. López & Antoine Soubeyran & J. Souza, 2018. "The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem," Post-Print hal-01985333, HAL.
    3. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    4. Peng Wang & Detong Zhu & Yufeng Song, 2019. "Derivative-Free Feasible Backtracking Search Methods for Nonlinear Multiobjective Optimization with Simple Boundary Constraint," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(03), pages 1-15, June.
    5. Tong Shu & Xiaoqin Gao & Shou Chen & Shouyang Wang & Kin Keung Lai & Lu Gan, 2016. "Weighing Efficiency-Robustness in Supply Chain Disruption by Multi-Objective Firefly Algorithm," Sustainability, MDPI, vol. 8(3), pages 1-27, March.
    6. Fereshteh Akbari & Mehrdad Ghaznavi & Esmaile Khorram, 2018. "A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 560-590, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rastegar, Narges & Khorram, Esmaile, 2014. "A combined scalarizing method for multiobjective programming problems," European Journal of Operational Research, Elsevier, vol. 236(1), pages 229-237.
    2. Tsionas, Mike G., 2019. "Multi-objective optimization using statistical models," European Journal of Operational Research, Elsevier, vol. 276(1), pages 364-378.
    3. A. Y. D. Siem & D. den Hertog & A. L. Hoffmann, 2011. "A Method for Approximating Univariate Convex Functions Using Only Function Value Evaluations," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 591-604, November.
    4. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    5. Quariguasi Frota Neto, J. & Walther, G. & Bloemhof, J. & van Nunen, J.A.E.E. & Spengler, T., 2009. "A methodology for assessing eco-efficiency in logistics networks," European Journal of Operational Research, Elsevier, vol. 193(3), pages 670-682, March.
    6. Steuer, Ralph E. & Utz, Sebastian, 2023. "Non-contour efficient fronts for identifying most preferred portfolios in sustainability investing," European Journal of Operational Research, Elsevier, vol. 306(2), pages 742-753.
    7. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "An algorithm for quadratically constrained multi-objective quadratic fractional programming with pentagonal fuzzy numbers," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 49-71.
    8. Esmaeil Keyvanshokooh & Pooyan Kazemian & Mohammad Fattahi & Mark P. Van Oyen, 2022. "Coordinated and Priority‐Based Surgical Care: An Integrated Distributionally Robust Stochastic Optimization Approach," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1510-1535, April.
    9. Fereshteh Akbari & Mehrdad Ghaznavi & Esmaile Khorram, 2018. "A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 560-590, August.
    10. Sergio García García & Vicente Rodríguez Montequín & Marina Díaz Piloñeta & Susana Torno Lougedo, 2021. "Multi-Objective Optimization of Steel Off-Gas in Cogeneration Using the ε-Constraint Method: A Combined Coke Oven and Converter Gas Case Study," Energies, MDPI, vol. 14(10), pages 1-21, May.
    11. Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2008. "The effect of transformations on the approximation of univariate (convex) functions with applications to Pareto curves," European Journal of Operational Research, Elsevier, vol. 189(2), pages 347-362, September.
    12. Masar Al-Rabeeah & Santosh Kumar & Ali Al-Hasani & Elias Munapo & Andrew Eberhard, 2019. "Bi-objective integer programming analysis based on the characteristic equation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 937-944, October.
    13. Kathrin Klamroth & Margaret M. Wiecek, 2002. "A Bi-Objective Median Location Problem With a Line Barrier," Operations Research, INFORMS, vol. 50(4), pages 670-679, August.
    14. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    15. Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2005. "Multivariate Convex Approximation and Least-Norm Convex Data-Smoothing," Other publications TiSEM ad31ef2c-fc29-46c1-9b8f-6, Tilburg University, School of Economics and Management.
    16. Alcaraz, Javier & Landete, Mercedes & Monge, Juan F. & Sainz-Pardo, José L., 2020. "Multi-objective evolutionary algorithms for a reliability location problem," European Journal of Operational Research, Elsevier, vol. 283(1), pages 83-93.
    17. Hartillo-Hermoso, María Isabel & Jiménez-Tafur, Haydee & Ucha-Enríquez, José María, 2020. "An exact algebraic ϵ-constraint method for bi-objective linear integer programming based on test sets," European Journal of Operational Research, Elsevier, vol. 282(2), pages 453-463.
    18. Benjamin Martin & Alexandre Goldsztejn & Laurent Granvilliers & Christophe Jermann, 2016. "On continuation methods for non-linear bi-objective optimization: towards a certified interval-based approach," Journal of Global Optimization, Springer, vol. 64(1), pages 3-16, January.
    19. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    20. C. Kaya & Helmut Maurer, 2014. "A numerical method for nonconvex multi-objective optimal control problems," Computational Optimization and Applications, Springer, vol. 57(3), pages 685-702, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:162:y:2014:i:2:d:10.1007_s10957-013-0346-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.