IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v62y2015i3p481-505.html
   My bibliography  Save this article

Optimization over the Pareto outcome set associated with a convex bi-objective optimization problem: theoretical results, deterministic algorithm and application to the stochastic case

Author

Listed:
  • Henri Bonnel
  • Julien Collonge

Abstract

Our paper consists of two main parts. In the first one, we deal with the deterministic problem of minimizing a real valued function $$f$$ f over the Pareto outcome set associated with a deterministic convex bi-objective optimization problem (BOP), in the particular case where $$f$$ f depends on the objectives of (BOP), i.e. we optimize over the Pareto set in the outcome space. In general, the optimal value $$U$$ U of such a kind of problem cannot be computed directly, so we propose a deterministic outcome space algorithm whose principle is to give at every step a range (lower bound, upper bound) that contains $$U$$ U . Then we show that for any given error bound, the algorithm terminates in a finite number of steps. In the second part of our paper, in order to handle also the stochastic case, we consider the situation where the two objectives of (BOP) are given by expectations of random functions, and we deal with the stochastic problem $$(S)$$ ( S ) of minimizing a real valued function $$f$$ f over the Pareto outcome set associated with this Stochastic bi-objective Optimization Problem (SBOP). Because of the presence of random functions, the Pareto set associated with this type of problem cannot be explicitly given, and thus it is not possible to compute the optimal value $$V$$ V of problem $$(S)$$ ( S ) . That is why we consider a sequence of Sample Average Approximation problems (SAA- $$N$$ N , where $$N$$ N is the sample size) whose optimal values converge almost surely to $$V$$ V as the sample size $$N$$ N goes to infinity. Assuming $$f$$ f nondecreasing, we show that the convergence rate is exponential, and we propose a confidence interval for $$V$$ V . Finally, some computational results are given to illustrate the paper. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Henri Bonnel & Julien Collonge, 2015. "Optimization over the Pareto outcome set associated with a convex bi-objective optimization problem: theoretical results, deterministic algorithm and application to the stochastic case," Journal of Global Optimization, Springer, vol. 62(3), pages 481-505, July.
  • Handle: RePEc:spr:jglopt:v:62:y:2015:i:3:p:481-505
    DOI: 10.1007/s10898-014-0257-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0257-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0257-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jörg Fliege & Huifu Xu, 2011. "Stochastic Multiobjective Optimization: Sample Average Approximation and Applications," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 135-162, October.
    2. R. Horst & N. V. Thoai & Y. Yamamoto & D. Zenke, 2007. "On Optimization over the Efficient Set in Linear Multicriteria Programming," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 433-443, September.
    3. Horst, Reiner & Thoai, Nguyen V., 1999. "Maximizing a concave function over the efficient or weakly-efficient set," European Journal of Operational Research, Elsevier, vol. 117(2), pages 239-252, September.
    4. H. P. Benson, 1998. "Further Analysis of an Outcome Set-Based Algorithm for Multiple-Objective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 97(1), pages 1-10, April.
    5. H. P. Benson, 1998. "Hybrid Approach for Solving Multiple-Objective Linear Programs in Outcome Space," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 17-35, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thai Doan Chuong, 2020. "Optimality conditions for nonsmooth multiobjective bilevel optimization problems," Annals of Operations Research, Springer, vol. 287(2), pages 617-642, April.
    2. Henri Bonnel & Christopher Schneider, 2019. "Post-Pareto Analysis and a New Algorithm for the Optimal Parameter Tuning of the Elastic Net," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 993-1027, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henri Bonnel & Julien Collonge, 2014. "Stochastic Optimization over a Pareto Set Associated with a Stochastic Multi-Objective Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 405-427, August.
    2. H. P. Benson & E. Sun, 2000. "Outcome Space Partition of the Weight Set in Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 17-36, April.
    3. Henri Bonnel & C. Yalçın Kaya, 2010. "Optimization Over the Efficient Set of Multi-objective Convex Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 93-112, October.
    4. N. V. Thoai, 2010. "Reverse Convex Programming Approach in the Space of Extreme Criteria for Optimization over Efficient Sets," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 263-277, November.
    5. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    6. Henri Bonnel & Christopher Schneider, 2019. "Post-Pareto Analysis and a New Algorithm for the Optimal Parameter Tuning of the Elastic Net," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 993-1027, December.
    7. Erjiang Sun, 2017. "On Optimization Over the Efficient Set of a Multiple Objective Linear Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 236-246, January.
    8. Alves, Maria João & Costa, João Paulo, 2009. "An exact method for computing the nadir values in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 198(2), pages 637-646, October.
    9. Fouad Ben Abdelaziz & Cinzia Colapinto & Davide La Torre & Danilo Liuzzi, 2020. "A stochastic dynamic multiobjective model for sustainable decision making," Annals of Operations Research, Springer, vol. 293(2), pages 539-556, October.
    10. Hadi Karimi & Sandra D. Ekşioğlu & Michael Carbajales-Dale, 2021. "A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains," Annals of Operations Research, Springer, vol. 296(1), pages 95-130, January.
    11. Nguyen Thoai, 2012. "Criteria and dimension reduction of linear multiple criteria optimization problems," Journal of Global Optimization, Springer, vol. 52(3), pages 499-508, March.
    12. Anthony Przybylski & Xavier Gandibleux & Matthias Ehrgott, 2010. "A Recursive Algorithm for Finding All Nondominated Extreme Points in the Outcome Set of a Multiobjective Integer Programme," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 371-386, August.
    13. Löhne, Andreas & Weißing, Benjamin, 2017. "The vector linear program solver Bensolve – notes on theoretical background," European Journal of Operational Research, Elsevier, vol. 260(3), pages 807-813.
    14. Matthias Ehrgott & Andreas Löhne & Lizhen Shao, 2012. "A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming," Journal of Global Optimization, Springer, vol. 52(4), pages 757-778, April.
    15. Zhenqiang Zhang & Sile Ma & Xiangyuan Jiang, 2022. "Research on Multi-Objective Multi-Robot Task Allocation by Lin–Kernighan–Helsgaun Guided Evolutionary Algorithms," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    16. Fabrice Poirion & Quentin Mercier & Jean-Antoine Désidéri, 2017. "Descent algorithm for nonsmooth stochastic multiobjective optimization," Computational Optimization and Applications, Springer, vol. 68(2), pages 317-331, November.
    17. Ehrgott, Matthias & Tenfelde-Podehl, Dagmar, 2003. "Computation of ideal and Nadir values and implications for their use in MCDM methods," European Journal of Operational Research, Elsevier, vol. 151(1), pages 119-139, November.
    18. Benson, Harold P. & Sun, Erjiang, 2002. "A weight set decomposition algorithm for finding all efficient extreme points in the outcome set of a multiple objective linear program," European Journal of Operational Research, Elsevier, vol. 139(1), pages 26-41, May.
    19. Bennet Gebken & Sebastian Peitz, 2021. "Inverse multiobjective optimization: Inferring decision criteria from data," Journal of Global Optimization, Springer, vol. 80(1), pages 3-29, May.
    20. Esra Karasakal & Murat Köksalan, 2009. "Generating a Representative Subset of the Nondominated Frontier in Multiple Criteria Decision Making," Operations Research, INFORMS, vol. 57(1), pages 187-199, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:62:y:2015:i:3:p:481-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.