IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/6a6f7eff-fa7e-4531-84e1-6ab54bfd0bf1.html
   My bibliography  Save this paper

The Effect of Transformations on the Approximation of Univariate (Convex) Functions with Applications to Pareto Curves

Author

Listed:
  • Siem, A.Y.D.

    (Tilburg University, Center For Economic Research)

  • den Hertog, D.

    (Tilburg University, Center For Economic Research)

  • Hoffmann, A.L.

Abstract

In the literature, methods for the construction of piecewise linear upper and lower bounds for the approximation of univariate convex functions have been proposed. We study the effect of the use of transformations on the approximation of univariate (convex) functions. In this paper, we show that these transformations can be used to construct upper and lower bounds for nonconvex functions. Moreover, we show that by using such transformations of the input variable or the output variable, we obtain tighter upper and lower bounds for the approximation of convex functions than without these approximations. We show that these transformations can be applied to the approximation of a (convex) Pareto curve that is associated with a (convex) bi-objective optimization problem.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2006. "The Effect of Transformations on the Approximation of Univariate (Convex) Functions with Applications to Pareto Curves," Discussion Paper 2006-66, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:6a6f7eff-fa7e-4531-84e1-6ab54bfd0bf1
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/779017/66.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fruhwirth, B. & Bukkard, R. E. & Rote, G., 1989. "Approximation of convex curves with application to the bicriterial minimum cost flow problem," European Journal of Operational Research, Elsevier, vol. 42(3), pages 326-338, October.
    2. Yang, X. Q. & Goh, C. J., 1997. "A method for convex curve approximation," European Journal of Operational Research, Elsevier, vol. 97(1), pages 205-212, February.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Terlaky, T., 1985. "On lp programming," European Journal of Operational Research, Elsevier, vol. 22(1), pages 70-100, October.
    5. Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2007. "A Method For Approximating Univariate Convex Functions Using Only Function Value Evaluations," Other publications TiSEM a3afe119-3957-4700-a895-4, Tilburg University, School of Economics and Management.
    6. Rainer E. Burkard & Horst W. Hamacher & Günter Rote, 1991. "Sandwich approximation of univariate convex functions with an application to separable convex programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(6), pages 911-924, December.
    7. Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2007. "A Method For Approximating Univariate Convex Functions Using Only Function Value Evaluations," Discussion Paper 2007-67, Tilburg University, Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Y. D. Siem & D. den Hertog & A. L. Hoffmann, 2011. "A Method for Approximating Univariate Convex Functions Using Only Function Value Evaluations," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 591-604, November.
    2. Gijs Rennen & Edwin R. van Dam & Dick den Hertog, 2011. "Enhancement of Sandwich Algorithms for Approximating Higher-Dimensional Convex Pareto Sets," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 493-517, November.
    3. Rasmus Bokrantz & Anders Forsgren, 2013. "An Algorithm for Approximating Convex Pareto Surfaces Based on Dual Techniques," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 377-393, May.
    4. Siem, A.Y.D., 2008. "Property preservation and quality measures in meta-models," Other publications TiSEM 259d3ed2-1a23-48fe-8af8-2, Tilburg University, School of Economics and Management.
    5. Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2007. "A Method For Approximating Univariate Convex Functions Using Only Function Value Evaluations," Discussion Paper 2007-67, Tilburg University, Center for Economic Research.
    6. Hoffmann, A.L. & Siem, A.Y.D. & den Hertog, D. & Kaanders, J.H.A.M. & Huizenga, H., 2008. "Convex reformulation of biologically-based multi-crtiteria intensity-modulated radiation therapy optimization including fractionation effects," Other publications TiSEM a5430d1f-6b88-43ba-af32-6, Tilburg University, School of Economics and Management.
    7. Rennen, G. & van Dam, E.R. & den Hertog, D., 2009. "Enhancement of Sandwich Algorithms for Approximating Higher Dimensional Convex Pareto Sets," Other publications TiSEM e2255959-6691-4ef1-88a4-5, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2005. "Multivariate Convex Approximation and Least-Norm Convex Data-Smoothing," Discussion Paper 2005-132, Tilburg University, Center for Economic Research.
    2. Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2005. "Multivariate Convex Approximation and Least-Norm Convex Data-Smoothing," Other publications TiSEM ad31ef2c-fc29-46c1-9b8f-6, Tilburg University, School of Economics and Management.
    3. Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2007. "A Method For Approximating Univariate Convex Functions Using Only Function Value Evaluations," Discussion Paper 2007-67, Tilburg University, Center for Economic Research.
    4. A. Y. D. Siem & D. den Hertog & A. L. Hoffmann, 2011. "A Method for Approximating Univariate Convex Functions Using Only Function Value Evaluations," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 591-604, November.
    5. Siem, A.Y.D., 2008. "Property preservation and quality measures in meta-models," Other publications TiSEM 259d3ed2-1a23-48fe-8af8-2, Tilburg University, School of Economics and Management.
    6. Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2007. "A Method For Approximating Univariate Convex Functions Using Only Function Value Evaluations," Other publications TiSEM a3afe119-3957-4700-a895-4, Tilburg University, School of Economics and Management.
    7. Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.
    8. Hamacher, Horst W. & Pedersen, Christian Roed & Ruzika, Stefan, 2007. "Multiple objective minimum cost flow problems: A review," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1404-1422, February.
    9. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    10. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    11. Peter A. Abken & Milind M. Shrikhande, 1997. "The role of currency derivatives in internationally diversified portfolios," Economic Review, Federal Reserve Bank of Atlanta, vol. 82(Q 3), pages 34-59.
    12. Leonard J. Mirman & Egas M. Salgueiro & Marc Santugini, 2013. "Integrating Real and Financial Decisions of the Firm," Cahiers de recherche 1333, CIRPEE.
    13. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    14. Raffestin, Louis, 2014. "Diversification and systemic risk," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 85-106.
    15. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    16. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    17. Hany Shawky & Ronald Forbes & Alan Frankle, 1983. "Liquidity Services and Capital Market Equilibrium: The Case for Money Market Mutual Funds," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 6(2), pages 141-152, June.
    18. Colin Atkinson & Emmeline Storey, 2010. "Building an Optimal Portfolio in Discrete Time in the Presence of Transaction Costs," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 323-357.
    19. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    20. Jalili Marand, Ata & Hoseinpour, Pooya, 2024. "A congested facility location problem with strategic customers," European Journal of Operational Research, Elsevier, vol. 318(2), pages 442-456.

    More about this item

    Keywords

    approximation theory; convexity; convex/concave transformation; Pareto curve;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:6a6f7eff-fa7e-4531-84e1-6ab54bfd0bf1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.