IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v50y2002i4p670-679.html
   My bibliography  Save this article

A Bi-Objective Median Location Problem With a Line Barrier

Author

Listed:
  • Kathrin Klamroth

    (Institute of Applied Mathematics, University of Erlangen-Nuremberg, Erlangen, Germany)

  • Margaret M. Wiecek

    (University of Copenhagen, Copenhagen, Denmark, and Department of Mathematical Sciences, Clemson University, Clemson, South Carolina)

Abstract

The multiple objective median problem (MOMP) involves locating a new facility with respect to a given set of existing facilities so that a vector of performance criteria is optimized. A variation of this problem is obtained if the existing facilities are situated on two sides of a linear barrier. Such barriers, like rivers, highways, borders, or mountain ranges, are frequently encountered in practice. In this paper, theory of an MOMP with line barriers is developed. As this problem is nonconvex but specially structured, a reduction to a series of convex optimization problems is proposed. The general results lead to a polynomial algorithm for finding the set of efficient solutions. The algorithm is proposed for bicriteria problems with different measures of distance.

Suggested Citation

  • Kathrin Klamroth & Margaret M. Wiecek, 2002. "A Bi-Objective Median Location Problem With a Line Barrier," Operations Research, INFORMS, vol. 50(4), pages 670-679, August.
  • Handle: RePEc:inm:oropre:v:50:y:2002:i:4:p:670-679
    DOI: 10.1287/opre.50.4.670.2857
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.50.4.670.2857
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.50.4.670.2857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arthur M. Geoffrion, 1967. "Solving Bicriterion Mathematical Programs," Operations Research, INFORMS, vol. 15(1), pages 39-54, February.
    2. Katz, I. Norman & Cooper, Leon, 1981. "Facility location in the presence of forbidden regions, I: Formulation and the case of Euclidean distance with one forbidden circle," European Journal of Operational Research, Elsevier, vol. 6(2), pages 166-173, February.
    3. Hamacher, H. W. & Nickel, S., 1994. "Combinatorial algorithms for some 1-facility median problems in the plane," European Journal of Operational Research, Elsevier, vol. 79(2), pages 340-351, December.
    4. Y. P. Aneja & M. Parlar, 1994. "Technical Note—Algorithms for Weber Facility Location in the Presence of Forbidden Regions and/or Barriers to Travel," Transportation Science, INFORMS, vol. 28(1), pages 70-76, February.
    5. Yang, X. Q. & Goh, C. J., 1997. "A method for convex curve approximation," European Journal of Operational Research, Elsevier, vol. 97(1), pages 205-212, February.
    6. Hamacher, H. W. & Nickel, S., 1996. "Multicriteria planar location problems," European Journal of Operational Research, Elsevier, vol. 94(1), pages 66-86, October.
    7. Rajan Batta & Anjan Ghose & Udatta S. Palekar, 1989. "Locating Facilities on the Manhattan Metric with Arbitrarily Shaped Barriers and Convex Forbidden Regions," Transportation Science, INFORMS, vol. 23(1), pages 26-36, February.
    8. H. W. Hamacher & S. Nickel, 1995. "Restricted planar location problems and applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 967-992, September.
    9. Richard C. Larson & Ghazala Sadiq, 1983. "Facility Locations with the Manhattan Metric in the Presence of Barriers to Travel," Operations Research, INFORMS, vol. 31(4), pages 652-669, August.
    10. Foulds, L. R. & Hamacher, H. W., 1993. "Optimal bin location and sequencing in printed circuit board assembly," European Journal of Operational Research, Elsevier, vol. 66(3), pages 279-290, May.
    11. Butt, Steven E. & Cavalier, Tom M., 1996. "An efficient algorithm for facility location in the presence of forbidden regions," European Journal of Operational Research, Elsevier, vol. 90(1), pages 56-70, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Canbolat, Mustafa S. & Wesolowsky, George O., 2010. "The rectilinear distance Weber problem in the presence of a probabilistic line barrier," European Journal of Operational Research, Elsevier, vol. 202(1), pages 114-121, April.
    2. Bischoff, M. & Klamroth, K., 2007. "An efficient solution method for Weber problems with barriers based on genetic algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 22-41, February.
    3. Klamroth, K., 2004. "Algebraic properties of location problems with one circular barrier," European Journal of Operational Research, Elsevier, vol. 154(1), pages 20-35, April.
    4. Amiri-Aref, Mehdi & Farahani, Reza Zanjirani & Hewitt, Mike & Klibi, Walid, 2019. "Equitable location of facilities in a region with probabilistic barriers to travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 66-85.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P.M. Dearing & H.W. Hamacher & K. Klamroth, 2002. "Dominating sets for rectilinear center location problems with polyhedral barriers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(7), pages 647-665, October.
    2. Selçuk Savaş & Rajan Batta & Rakesh Nagi, 2002. "Finite-Size Facility Placement in the Presence of Barriers to Rectilinear Travel," Operations Research, INFORMS, vol. 50(6), pages 1018-1031, December.
    3. Murat Oğuz & Tolga Bektaş & Julia A Bennell & Jörg Fliege, 2016. "A modelling framework for solving restricted planar location problems using phi-objects," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(8), pages 1080-1096, August.
    4. H. W. Hamacher & S. Nickel, 1995. "Restricted planar location problems and applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 967-992, September.
    5. Stefan Nickel, 1997. "Bicriteria and restricted 2-Facility Weber Problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(2), pages 167-195, June.
    6. Masashi Miyagawa, 2012. "Rectilinear distance to a facility in the presence of a square barrier," Annals of Operations Research, Springer, vol. 196(1), pages 443-458, July.
    7. Masashi Miyagawa, 2017. "Continuous location model of a rectangular barrier facility," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 95-110, April.
    8. Klamroth, K., 2001. "A reduction result for location problems with polyhedral barriers," European Journal of Operational Research, Elsevier, vol. 130(3), pages 486-497, May.
    9. Oğuz, Murat & Bektaş, Tolga & Bennell, Julia A., 2018. "Multicommodity flows and Benders decomposition for restricted continuous location problems," European Journal of Operational Research, Elsevier, vol. 266(3), pages 851-863.
    10. Klamroth, K., 2004. "Algebraic properties of location problems with one circular barrier," European Journal of Operational Research, Elsevier, vol. 154(1), pages 20-35, April.
    11. Bischoff, M. & Klamroth, K., 2007. "An efficient solution method for Weber problems with barriers based on genetic algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 22-41, February.
    12. P. Dearing & K. Klamroth & R. Segars, 2005. "Planar Location Problems with Block Distance and Barriers," Annals of Operations Research, Springer, vol. 136(1), pages 117-143, April.
    13. Pawel Kalczynski & Zvi Drezner, 2021. "The obnoxious facilities planar p-median problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 577-593, June.
    14. Sarkar, Avijit & Batta, Rajan & Nagi, Rakesh, 2007. "Placing a finite size facility with a center objective on a rectangular plane with barriers," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1160-1176, June.
    15. Zhang, Min & Savas, Selçuk & Batta, Rajan & Nagi, Rakesh, 2009. "Facility placement with sub-aisle design in an existing layout," European Journal of Operational Research, Elsevier, vol. 197(1), pages 154-165, August.
    16. Butt, Steven E. & Cavalier, Tom M., 1997. "Facility location in the presence of congested regions with the rectilinear distance metric," Socio-Economic Planning Sciences, Elsevier, vol. 31(2), pages 103-113, June.
    17. Malgorzata Miklas-Kalczynska & Pawel Kalczynski, 2024. "Multiple obnoxious facility location: the case of protected areas," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
    18. Avella, P. & Benati, S. & Canovas Martinez, L. & Dalby, K. & Di Girolamo, D. & Dimitrijevic, B. & Ghiani, G. & Giannikos, I. & Guttmann, N. & Hultberg, T. H. & Fliege, J. & Marin, A. & Munoz Marquez, , 1998. "Some personal views on the current state and the future of locational analysis," European Journal of Operational Research, Elsevier, vol. 104(2), pages 269-287, January.
    19. Canbolat, Mustafa S. & Wesolowsky, George O., 2010. "The rectilinear distance Weber problem in the presence of a probabilistic line barrier," European Journal of Operational Research, Elsevier, vol. 202(1), pages 114-121, April.
    20. Andrea Maier & Horst W. Hamacher, 2019. "Complexity results on planar multifacility location problems with forbidden regions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 433-484, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:50:y:2002:i:4:p:670-679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.