IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v147y2010i1d10.1007_s10957-010-9709-y.html
   My bibliography  Save this article

Optimization Over the Efficient Set of Multi-objective Convex Optimal Control Problems

Author

Listed:
  • Henri Bonnel

    (Université de la Nouvelle-Calédonie, ERIM)

  • C. Yalçın Kaya

    (University of South Australia)

Abstract

We consider multi-objective convex optimal control problems. First we state a relationship between the (weakly or properly) efficient set of the multi-objective problem and the solution of the problem scalarized via a convex combination of objectives through a vector of parameters (or weights). Then we establish that (i) the solution of the scalarized (parametric) problem for any given parameter vector is unique and (weakly or properly) efficient and (ii) for each solution in the (weakly or properly) efficient set, there exists at least one corresponding parameter vector for the scalarized problem yielding the same solution. Therefore the set of all parametric solutions (obtained by solving the scalarized problem) is equal to the efficient set. Next we consider an additional objective over the efficient set. Based on the main result, the new objective can instead be considered over the (parametric) solution set of the scalarized problem. For the purpose of constructing numerical methods, we point to existing solution differentiability results for parametric optimal control problems. We propose numerical methods and give an example application to illustrate our approach.

Suggested Citation

  • Henri Bonnel & C. Yalçın Kaya, 2010. "Optimization Over the Efficient Set of Multi-objective Convex Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 93-112, October.
  • Handle: RePEc:spr:joptap:v:147:y:2010:i:1:d:10.1007_s10957-010-9709-y
    DOI: 10.1007/s10957-010-9709-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-010-9709-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-010-9709-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C.J. Price & I.D. Coope & D. Byatt, 2002. "A Convergent Variant of the Nelder–Mead Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 5-19, April.
    2. R. Horst & N. V. Thoai & Y. Yamamoto & D. Zenke, 2007. "On Optimization over the Efficient Set in Linear Multicriteria Programming," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 433-443, September.
    3. Horst, Reiner & Thoai, Nguyen V., 1999. "Maximizing a concave function over the efficient or weakly-efficient set," European Journal of Operational Research, Elsevier, vol. 117(2), pages 239-252, September.
    4. Regina Burachik & C. Kaya & Musa Mammadov, 2010. "An inexact modified subgradient algorithm for nonconvex optimization," Computational Optimization and Applications, Springer, vol. 45(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    2. Henri Bonnel & Julien Collonge, 2015. "Optimization over the Pareto outcome set associated with a convex bi-objective optimization problem: theoretical results, deterministic algorithm and application to the stochastic case," Journal of Global Optimization, Springer, vol. 62(3), pages 481-505, July.
    3. C. Yalçın Kaya, 2020. "Optimal Control of the Double Integrator with Minimum Total Variation," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 966-981, June.
    4. C. Kaya & Helmut Maurer, 2014. "A numerical method for nonconvex multi-objective optimal control problems," Computational Optimization and Applications, Springer, vol. 57(3), pages 685-702, April.
    5. R. S. Burachik & C. Y. Kaya & M. M. Rizvi, 2014. "A New Scalarization Technique to Approximate Pareto Fronts of Problems with Disconnected Feasible Sets," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 428-446, August.
    6. Henri Bonnel & Julien Collonge, 2014. "Stochastic Optimization over a Pareto Set Associated with a Stochastic Multi-Objective Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 405-427, August.
    7. Henri Bonnel & Christopher Schneider, 2019. "Post-Pareto Analysis and a New Algorithm for the Optimal Parameter Tuning of the Elastic Net," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 993-1027, December.
    8. Gokhan Kirlik & Serpil Sayın, 2015. "Computing the nadir point for multiobjective discrete optimization problems," Journal of Global Optimization, Springer, vol. 62(1), pages 79-99, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henri Bonnel & Julien Collonge, 2015. "Optimization over the Pareto outcome set associated with a convex bi-objective optimization problem: theoretical results, deterministic algorithm and application to the stochastic case," Journal of Global Optimization, Springer, vol. 62(3), pages 481-505, July.
    2. N. V. Thoai, 2010. "Reverse Convex Programming Approach in the Space of Extreme Criteria for Optimization over Efficient Sets," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 263-277, November.
    3. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    4. Henri Bonnel & Christopher Schneider, 2019. "Post-Pareto Analysis and a New Algorithm for the Optimal Parameter Tuning of the Elastic Net," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 993-1027, December.
    5. Henri Bonnel & Julien Collonge, 2014. "Stochastic Optimization over a Pareto Set Associated with a Stochastic Multi-Objective Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 405-427, August.
    6. Ian Coope & Rachael Tappenden, 2019. "Efficient calculation of regular simplex gradients," Computational Optimization and Applications, Springer, vol. 72(3), pages 561-588, April.
    7. Erjiang Sun, 2017. "On Optimization Over the Efficient Set of a Multiple Objective Linear Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 236-246, January.
    8. L. F. Bueno & G. Haeser & J. M. Martínez, 2015. "A Flexible Inexact-Restoration Method for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 188-208, April.
    9. Alves, Maria João & Costa, João Paulo, 2009. "An exact method for computing the nadir values in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 198(2), pages 637-646, October.
    10. Nguyen Thoai, 2012. "Criteria and dimension reduction of linear multiple criteria optimization problems," Journal of Global Optimization, Springer, vol. 52(3), pages 499-508, March.
    11. C.J. Price & I.D. Coope, 2003. "Frame-Based Ray Search Algorithms in Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 359-377, February.
    12. Regina Burachik & Wilhelm Freire & C. Kaya, 2014. "Interior Epigraph Directions method for nonsmooth and nonconvex optimization via generalized augmented Lagrangian duality," Journal of Global Optimization, Springer, vol. 60(3), pages 501-529, November.
    13. Min Xi & Wenyu Sun & Yannan Chen & Hailin Sun, 2020. "A derivative-free algorithm for spherically constrained optimization," Journal of Global Optimization, Springer, vol. 76(4), pages 841-861, April.
    14. Hsun-Heng Tsai & Chyun-Chau Fuh & Jeng-Rong Ho & Chih-Kuang Lin, 2021. "Design of Optimal Controllers for Unknown Dynamic Systems through the Nelder–Mead Simplex Method," Mathematics, MDPI, vol. 9(16), pages 1-14, August.
    15. Ehrgott, Matthias & Tenfelde-Podehl, Dagmar, 2003. "Computation of ideal and Nadir values and implications for their use in MCDM methods," European Journal of Operational Research, Elsevier, vol. 151(1), pages 119-139, November.
    16. Regina S. Burachik & Alfredo N. Iusem & Jefferson G. Melo, 2013. "An Inexact Modified Subgradient Algorithm for Primal-Dual Problems via Augmented Lagrangians," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 108-131, April.
    17. Jornada, Daniel & Leon, V. Jorge, 2016. "Biobjective robust optimization over the efficient set for Pareto set reduction," European Journal of Operational Research, Elsevier, vol. 252(2), pages 573-586.
    18. R. Horst & N. V. Thoai & Y. Yamamoto & D. Zenke, 2007. "On Optimization over the Efficient Set in Linear Multicriteria Programming," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 433-443, September.
    19. Schöbel, Anita & Zhou-Kangas, Yue, 2021. "The price of multiobjective robustness: Analyzing solution sets to uncertain multiobjective problems," European Journal of Operational Research, Elsevier, vol. 291(2), pages 782-793.
    20. Žiga Rojec & Tadej Tuma & Jernej Olenšek & Árpád Bűrmen & Janez Puhan, 2022. "Meta-Optimization of Dimension Adaptive Parameter Schema for Nelder–Mead Algorithm in High-Dimensional Problems," Mathematics, MDPI, vol. 10(13), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:147:y:2010:i:1:d:10.1007_s10957-010-9709-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.