IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v38y2016i4d10.1007_s00291-016-0453-z.html
   My bibliography  Save this article

Quadratic scalarization for decomposed multiobjective optimization

Author

Listed:
  • Brian Dandurand

    (Clemson University)

  • Margaret M. Wiecek

    (Clemson University)

Abstract

Practical applications in multidisciplinary engineering design, business management, and military planning require distributed solution approaches for solving nonconvex, multiobjective optimization problems (MOPs). Under this motivation, a quadratic scalarization method (QSM) is developed with the goal to preserve decomposable structures of the MOP while addressing nonconvexity in a manner that avoids a high degree of nonlinearity and the introduction of additional nonsmoothness. Under certain assumptions, necessary and sufficient conditions for QSM-generated solutions to be weakly and properly efficient for an MOP are developed, with any form of efficiency being understood in a local sense. QSM is shown to correspond with the relaxed, reformulated weighted-Chebyshev method as a special case. An example is provided for demonstrating the application of QSM to a nonconvex MOP.

Suggested Citation

  • Brian Dandurand & Margaret M. Wiecek, 2016. "Quadratic scalarization for decomposed multiobjective optimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 1071-1096, October.
  • Handle: RePEc:spr:orspec:v:38:y:2016:i:4:d:10.1007_s00291-016-0453-z
    DOI: 10.1007/s00291-016-0453-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-016-0453-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-016-0453-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
    2. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, April.
    3. P. L. Yu, 1973. "A Class of Solutions for Group Decision Problems," Management Science, INFORMS, vol. 19(8), pages 936-946, April.
    4. White, D. J., 1988. "Weighting factor extensions for finite multiple objective vector minimization problems," European Journal of Operational Research, Elsevier, vol. 36(2), pages 256-265, August.
    5. R. S. Burachik & C. Y. Kaya & M. M. Rizvi, 2014. "A New Scalarization Technique to Approximate Pareto Fronts of Problems with Disconnected Feasible Sets," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 428-446, August.
    6. Refail Kasimbeyli, 2013. "A conic scalarization method in multi-objective optimization," Journal of Global Optimization, Springer, vol. 56(2), pages 279-297, June.
    7. Rastegar, Narges & Khorram, Esmaile, 2014. "A combined scalarizing method for multiobjective programming problems," European Journal of Operational Research, Elsevier, vol. 236(1), pages 229-237.
    8. Jörg Fliege & Benar Fux Svaiter, 2000. "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 479-494, August.
    9. Stacey Faulkenberg & Margaret Wiecek, 2012. "Generating equidistant representations in biobjective programming," Computational Optimization and Applications, Springer, vol. 51(3), pages 1173-1210, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fereshteh Akbari & Mehrdad Ghaznavi & Esmaile Khorram, 2018. "A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 560-590, August.
    2. Nikolaos Argyris & José Figueira & Alec Morton, 2011. "Identifying preferred solutions to Multi-Objective Binary Optimisation problems, with an application to the Multi-Objective Knapsack Problem," Journal of Global Optimization, Springer, vol. 49(2), pages 213-235, February.
    3. Mounir El Maghri & Youssef Elboulqe, 2018. "Reduced Jacobian Method," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 917-943, December.
    4. Mousavi, M. & Gitinavard, H. & Mousavi, S.M., 2017. "A soft computing based-modified ELECTRE model for renewable energy policy selection with unknown information," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 774-787.
    5. G. Bento & J. Cruz Neto & G. López & Antoine Soubeyran & J. Souza, 2018. "The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem," Post-Print hal-01985333, HAL.
    6. Stephan Helfrich & Kathrin Prinz & Stefan Ruzika, 2024. "The Weighted p-Norm Weight Set Decomposition for Multiobjective Discrete Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1187-1216, September.
    7. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    8. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    9. Comino, E. & Ferretti, V., 2016. "Indicators-based spatial SWOT analysis: supporting the strategic planning and management of complex territorial systems," LSE Research Online Documents on Economics 64142, London School of Economics and Political Science, LSE Library.
    10. Omer F. Baris, 2018. "Timing effect in bargaining and ex ante efficiency of the relative utilitarian solution," Theory and Decision, Springer, vol. 84(4), pages 547-556, June.
    11. Kaveh Madani & Laura Read & Laleh Shalikarian, 2014. "Voting Under Uncertainty: A Stochastic Framework for Analyzing Group Decision Making Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1839-1856, May.
    12. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    13. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    14. Haurant, P. & Oberti, P. & Muselli, M., 2011. "Multicriteria selection aiding related to photovoltaic plants on farming fields on Corsica island: A real case study using the ELECTRE outranking framework," Energy Policy, Elsevier, vol. 39(2), pages 676-688, February.
    15. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    16. Nergiz Kasimbeyli, 2015. "Existence and characterization theorems in nonconvex vector optimization," Journal of Global Optimization, Springer, vol. 62(1), pages 155-165, May.
    17. Bouyssou, Denis & Marchant, Thierry, 2007. "An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories," European Journal of Operational Research, Elsevier, vol. 178(1), pages 246-276, April.
    18. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    19. Derya Deliktaş, 2022. "Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 748-784, September.
    20. Morgenroth, Edgar & FitzGerald, John & FitzGerald, John, 2006. "Summary and Conclusions," Book Chapters, in: Morgenroth, Edgar (ed.),Ex-Ante Evaluation of the Investment Priorities for the National Development Plan 2007-2013, chapter 24, pages 317-333, Economic and Social Research Institute (ESRI).
      • Baker, Terence J. & FitzGerald, John & Honohan, Patrick & FitzGerald, John & Honohan, Patrick, 1996. "Summary and Conclusions," Book Chapters, in: Baker, Terence J. (ed.),Economic Implications for Ireland of EMU, chapter 12, pages 339-352, Economic and Social Research Institute (ESRI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:38:y:2016:i:4:d:10.1007_s00291-016-0453-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.