IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v159y2013i1d10.1007_s10957-013-0277-9.html
   My bibliography  Save this article

A Parallel Splitting Method for Separable Convex Programs

Author

Listed:
  • K. Wang

    (Nanjing Normal University)

  • D. R. Han

    (Nanjing Normal University)

  • L. L. Xu

    (Nanjing Normal University)

Abstract

In this paper, we propose a new parallel splitting augmented Lagrangian method for solving the nonlinear programs where the objective function is separable with three operators and the constraint is linear. The method is an improvement of the method of He (Comput. Optim. Appl., 2(42):195–212, 2009), where we generate a predictor using the same parallel splitting augmented Lagrangian scheme as that in He (Comput. Optim. Appl., 2(42):195–212, 2009), while adopting a new strategy to get the next iterate. Under the mild assumptions of convexity of the underlying mappings and the non-emptiness of the solution set, we prove that the proposed algorithm is globally convergent. We apply the new method in the area of image processing and to solve some quadratic programming problems. The preliminary numerical results indicate that the new method is efficient.

Suggested Citation

  • K. Wang & D. R. Han & L. L. Xu, 2013. "A Parallel Splitting Method for Separable Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 138-158, October.
  • Handle: RePEc:spr:joptap:v:159:y:2013:i:1:d:10.1007_s10957-013-0277-9
    DOI: 10.1007/s10957-013-0277-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0277-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0277-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Jie & Zhang, Su, 2010. "A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1210-1220, December.
    2. R. T. Rockafellar, 1976. "Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 97-116, May.
    3. Deren Han & Xiaoming Yuan, 2012. "A Note on the Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 227-238, October.
    4. Deren Han & Xiaoming Yuan & Wenxing Zhang & Xingju Cai, 2013. "An ADM-based splitting method for separable convex programming," Computational Optimization and Applications, Springer, vol. 54(2), pages 343-369, March.
    5. B. S. He & L. Z. Liao, 2002. "Improvements of Some Projection Methods for Monotone Nonlinear Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 111-128, January.
    6. Bing-Sheng He, 2009. "Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities," Computational Optimization and Applications, Springer, vol. 42(2), pages 195-212, March.
    7. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaning Jiang & Deren Han & Xingju Cai, 2022. "An efficient partial parallel method with scaling step size strategy for three-block convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 383-419, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.
    2. Liusheng Hou & Hongjin He & Junfeng Yang, 2016. "A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA," Computational Optimization and Applications, Springer, vol. 63(1), pages 273-303, January.
    3. Deren Han & Xiaoming Yuan & Wenxing Zhang & Xingju Cai, 2013. "An ADM-based splitting method for separable convex programming," Computational Optimization and Applications, Springer, vol. 54(2), pages 343-369, March.
    4. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    5. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework II: general methods and numerical experiments," Computational Optimization and Applications, Springer, vol. 51(2), pages 681-708, March.
    6. Guoyong Gu & Bingsheng He & Xiaoming Yuan, 2014. "Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach," Computational Optimization and Applications, Springer, vol. 59(1), pages 135-161, October.
    7. Hongsheng Liu & Shu Lu, 2019. "Convergence of the augmented decomposition algorithm," Computational Optimization and Applications, Springer, vol. 72(1), pages 179-213, January.
    8. Min Tao & Xiaoming Yuan, 2018. "On Glowinski’s Open Question on the Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 163-196, October.
    9. Min Tao & Xiaoming Yuan, 2012. "An inexact parallel splitting augmented Lagrangian method for monotone variational inequalities with separable structures," Computational Optimization and Applications, Springer, vol. 52(2), pages 439-461, June.
    10. Bingsheng He & Xiaoming Yuan, 2018. "A class of ADMM-based algorithms for three-block separable convex programming," Computational Optimization and Applications, Springer, vol. 70(3), pages 791-826, July.
    11. Yaning Jiang & Deren Han & Xingju Cai, 2022. "An efficient partial parallel method with scaling step size strategy for three-block convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 383-419, December.
    12. Yuning Yang & Qingzhi Yang & Su Zhang, 2014. "Modified Alternating Direction Methods for the Modified Multiple-Sets Split Feasibility Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 130-147, October.
    13. Li, Min & Yuan, Xiao-Ming, 2008. "An APPA-based descent method with optimal step-sizes for monotone variational inequalities," European Journal of Operational Research, Elsevier, vol. 186(2), pages 486-495, April.
    14. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    15. Mauricio Romero Sicre, 2020. "On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 991-1019, July.
    16. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    17. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    18. Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
    19. Jean-Pierre Crouzeix & Abdelhak Hassouni & Eladio Ocaña, 2023. "A Short Note on the Twice Differentiability of the Marginal Function of a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 857-867, August.
    20. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:159:y:2013:i:1:d:10.1007_s10957-013-0277-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.