IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v207y2010i3p1210-1220.html
   My bibliography  Save this article

A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs

Author

Listed:
  • Sun, Jie
  • Zhang, Su

Abstract

We propose a modified alternating direction method for solving convex quadratically constrained quadratic semidefinite optimization problems. The method is a first-order method, therefore requires much less computational effort per iteration than the second-order approaches such as the interior point methods or the smoothing Newton methods. In fact, only a single inexact metric projection onto the positive semidefinite cone is required at each iteration. We prove global convergence and provide numerical evidence to show the effectiveness of this method.

Suggested Citation

  • Sun, Jie & Zhang, Su, 2010. "A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1210-1220, December.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:3:p:1210-1220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00530-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia-Wang Nie & Ya-Xiang Yuan, 2001. "A Predictor–Corrector Algorithm for QSDP Combining Dikin-Type and Newton Centering Steps," Annals of Operations Research, Springer, vol. 103(1), pages 115-133, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuning Yang & Qingzhi Yang & Su Zhang, 2014. "Modified Alternating Direction Methods for the Modified Multiple-Sets Split Feasibility Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 130-147, October.
    2. M. H. Xu & T. Wu, 2011. "A Class of Linearized Proximal Alternating Direction Methods," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 321-337, November.
    3. Xingcai Zhou & Yu Xiang, 2022. "ADMM-Based Differential Privacy Learning for Penalized Quantile Regression on Distributed Functional Data," Mathematics, MDPI, vol. 10(16), pages 1-28, August.
    4. Deren Han & Xiaoming Yuan & Wenxing Zhang & Xingju Cai, 2013. "An ADM-based splitting method for separable convex programming," Computational Optimization and Applications, Springer, vol. 54(2), pages 343-369, March.
    5. K. Wang & D. R. Han & L. L. Xu, 2013. "A Parallel Splitting Method for Separable Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 138-158, October.
    6. Huiling Lin, 2012. "An inexact spectral bundle method for convex quadratic semidefinite programming," Computational Optimization and Applications, Springer, vol. 53(1), pages 45-89, September.
    7. Xiaodi Bai & Jie Sun & Xiaojin Zheng, 2021. "An Augmented Lagrangian Decomposition Method for Chance-Constrained Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1056-1069, July.
    8. Min Tao, 2020. "Convergence study of indefinite proximal ADMM with a relaxation factor," Computational Optimization and Applications, Springer, vol. 77(1), pages 91-123, September.
    9. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.
    10. Deren Han & Xiaoming Yuan, 2012. "A Note on the Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 227-238, October.
    11. Guoyong Gu & Bingsheng He & Xiaoming Yuan, 2014. "Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach," Computational Optimization and Applications, Springer, vol. 59(1), pages 135-161, October.
    12. Min Tao & Xiaoming Yuan, 2018. "On Glowinski’s Open Question on the Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 163-196, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baha Alzalg & Asma Gafour, 2023. "Convergence of a Weighted Barrier Algorithm for Stochastic Convex Quadratic Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 490-515, February.
    2. Houduo Qi, 2009. "Local Duality of Nonlinear Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 124-141, February.
    3. Huiling Lin, 2012. "An inexact spectral bundle method for convex quadratic semidefinite programming," Computational Optimization and Applications, Springer, vol. 53(1), pages 45-89, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:3:p:1210-1220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.