IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v72y2019i1d10.1007_s10589-018-0039-6.html
   My bibliography  Save this article

Convergence of the augmented decomposition algorithm

Author

Listed:
  • Hongsheng Liu

    (University of North Carolina at Chapel Hill)

  • Shu Lu

    (University of North Carolina at Chapel Hill)

Abstract

We study the convergence of the augmented decomposition algorithm (ADA) proposed in Rockafellar et al. (Problem decomposition in block-separable convex optimization: ideas old and new, https://www.washington.edu/ , 2017) for solving multi-block separable convex minimization problems subject to linear constraints. We show that the global convergence rate of the exact ADA is $$o(1/\nu )$$ o ( 1 / ν ) under the assumption that there exists a saddle point. We consider the inexact augmented decomposition algorithm and establish global and local convergence results under some mild assumptions, by providing a stability result for the maximal monotone operator $$\mathcal {T}$$ T associated with the perturbation from both primal and dual perspectives. This result implies the local linear convergence of the inexact ADA for many applications such as the lasso, total variation reconstruction, exchange problem and many other problems from statistics, machine learning and engineering with $$\ell _1$$ ℓ 1 regularization.

Suggested Citation

  • Hongsheng Liu & Shu Lu, 2019. "Convergence of the augmented decomposition algorithm," Computational Optimization and Applications, Springer, vol. 72(1), pages 179-213, January.
  • Handle: RePEc:spr:coopap:v:72:y:2019:i:1:d:10.1007_s10589-018-0039-6
    DOI: 10.1007/s10589-018-0039-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-018-0039-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-018-0039-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi-Quan Luo & Paul Tseng, 1993. "On the Convergence Rate of Dual Ascent Methods for Linearly Constrained Convex Minimization," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 846-867, November.
    2. R. T. Rockafellar, 1976. "Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 97-116, May.
    3. L. Xiao & S. Boyd, 2006. "Optimal Scaling of a Gradient Method for Distributed Resource Allocation," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 469-488, June.
    4. Deren Han & Xiaoming Yuan, 2012. "A Note on the Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 227-238, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.
    2. Bingsheng He & Xiaoming Yuan, 2018. "A class of ADMM-based algorithms for three-block separable convex programming," Computational Optimization and Applications, Springer, vol. 70(3), pages 791-826, July.
    3. K. Wang & D. R. Han & L. L. Xu, 2013. "A Parallel Splitting Method for Separable Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 138-158, October.
    4. Mauricio Romero Sicre, 2020. "On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 991-1019, July.
    5. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    6. Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
    7. Jean-Pierre Crouzeix & Abdelhak Hassouni & Eladio Ocaña, 2023. "A Short Note on the Twice Differentiability of the Marginal Function of a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 857-867, August.
    8. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    9. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    10. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    11. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    12. Marwan A. Kutbi & Abdul Latif & Xiaolong Qin, 2019. "Convergence of Two Splitting Projection Algorithms in Hilbert Spaces," Mathematics, MDPI, vol. 7(10), pages 1-13, October.
    13. Darinka Dentcheva & Gabriela Martinez & Eli Wolfhagen, 2016. "Augmented Lagrangian Methods for Solving Optimization Problems with Stochastic-Order Constraints," Operations Research, INFORMS, vol. 64(6), pages 1451-1465, December.
    14. Gui-Hua Lin & Zhen-Ping Yang & Hai-An Yin & Jin Zhang, 2023. "A dual-based stochastic inexact algorithm for a class of stochastic nonsmooth convex composite problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 669-710, November.
    15. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    16. Xiaoming Yuan, 2011. "An improved proximal alternating direction method for monotone variational inequalities with separable structure," Computational Optimization and Applications, Springer, vol. 49(1), pages 17-29, May.
    17. Zhu, Daoli & Marcotte, Patrice, 1995. "Coupling the auxiliary problem principle with descent methods of pseudoconvex programming," European Journal of Operational Research, Elsevier, vol. 83(3), pages 670-685, June.
    18. Guo, Zhaomiao & Fan, Yueyue, 2017. "A Stochastic Multi-Agent Optimization Model for Energy Infrastructure Planning Under Uncertainty and Competition," Institute of Transportation Studies, Working Paper Series qt89s5s8hn, Institute of Transportation Studies, UC Davis.
    19. Yong-Jin Liu & Jing Yu, 2023. "A semismooth Newton based dual proximal point algorithm for maximum eigenvalue problem," Computational Optimization and Applications, Springer, vol. 85(2), pages 547-582, June.
    20. Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:72:y:2019:i:1:d:10.1007_s10589-018-0039-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.