IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v179y2018i1d10.1007_s10957-018-1342-1.html
   My bibliography  Save this article

Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs

Author

Listed:
  • Smail Addoune

    (University of Bordj Bou Arréridj)

  • Karima Boufi

    (University Hassan 1)

  • Ahmed Roubi

    (University Hassan 1)

Abstract

A generalized fractional programming problem is defined as the problem of minimizing a nonlinear function, defined as the maximum of several ratios of functions on a feasible domain. In this paper, we propose new methods based on the method of centers, on the proximal point algorithm and on the idea of bundle methods, for solving such problems. First, we introduce proximal point algorithms, in which, at each iteration, an approximate prox-regularized parametric subproblem is solved inexactly to obtain an approximate solution to the original problem. Based on this approach and on the idea of bundle methods, we propose implementable proximal bundle algorithms, in which the objective function of the last mentioned prox-regularized parametric subproblem is replaced by an easier one, typically a piecewise linear function. The methods deal with nondifferentiable nonlinearly constrained convex minimax fractional problems. We prove the convergence, give the rate of convergence of the proposed procedures and present numerical tests to illustrate their behavior.

Suggested Citation

  • Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.
  • Handle: RePEc:spr:joptap:v:179:y:2018:i:1:d:10.1007_s10957-018-1342-1
    DOI: 10.1007/s10957-018-1342-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1342-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1342-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Gugat, 1998. "Prox-Regularization Methods for Generalized Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 99(3), pages 691-722, December.
    2. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," Econometric Institute Research Papers ERS-2004-074-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. K. Boufi & A. Roubi, 2017. "Dual method of centers for solving generalized fractional programs," Journal of Global Optimization, Springer, vol. 69(2), pages 387-426, October.
    4. Robert Mifflin, 1977. "An Algorithm for Constrained Optimization with Semismooth Functions," Mathematics of Operations Research, INFORMS, vol. 2(2), pages 191-207, May.
    5. A. Roubi, 2000. "Method of Centers for Generalized Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 123-143, October.
    6. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," ERIM Report Series Research in Management ERS-2004-074-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karima Boufi & Mostafa El Haffari & Ahmed Roubi, 2020. "Optimality Conditions and a Method of Centers for Minimax Fractional Programs with Difference of Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 105-132, October.
    2. H. Boualam & A. Roubi, 2019. "Proximal bundle methods based on approximate subgradients for solving Lagrangian duals of minimax fractional programs," Journal of Global Optimization, Springer, vol. 74(2), pages 255-284, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Boualam & A. Roubi, 2019. "Proximal bundle methods based on approximate subgradients for solving Lagrangian duals of minimax fractional programs," Journal of Global Optimization, Springer, vol. 74(2), pages 255-284, June.
    2. Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
    3. Birbil, S.I. & Frenk, J.B.G. & Zhang, S., 2004. "Generalized Fractional Programming With User Interaction," ERIM Report Series Research in Management ERS-2004-033-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Benson, Harold P., 2006. "Fractional programming with convex quadratic forms and functions," European Journal of Operational Research, Elsevier, vol. 173(2), pages 351-369, September.
    5. Birbil, S.I. & Frenk, J.B.G. & Zhang, S., 2004. "Generalized Fractional Programming With User Interaction," Econometric Institute Research Papers ERS-2004-033-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. K. Boufi & A. Roubi, 2017. "Dual method of centers for solving generalized fractional programs," Journal of Global Optimization, Springer, vol. 69(2), pages 387-426, October.
    7. Yong Xia & Longfei Wang & Meijia Yang, 2019. "A fast algorithm for globally solving Tikhonov regularized total least squares problem," Journal of Global Optimization, Springer, vol. 73(2), pages 311-330, February.
    8. João Costa & Maria Alves, 2013. "Enhancing computations of nondominated solutions in MOLFP via reference points," Journal of Global Optimization, Springer, vol. 57(3), pages 617-631, November.
    9. Karima Boufi & Mostafa El Haffari & Ahmed Roubi, 2020. "Optimality Conditions and a Method of Centers for Minimax Fractional Programs with Difference of Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 105-132, October.
    10. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    11. M. Golbabapour & M. Reza Zahabi, 2024. "Sum rate maximization for mm-wave multi-user hybrid IRS-assisted MIMO systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 87(3), pages 593-604, November.
    12. Tien Mai & Arunesh Sinha, 2022. "Safe Delivery of Critical Services in Areas with Volatile Security Situation via a Stackelberg Game Approach," Papers 2204.11451, arXiv.org.
    13. Park, Chong Hyun & Lim, Heejong, 2021. "A parametric approach to integer linear fractional programming: Newton’s and Hybrid-Newton methods for an optimal road maintenance problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1030-1039.
    14. H. Konno & K. Tsuchiya & R. Yamamoto, 2007. "Minimization of the Ratio of Functions Defined as Sums of the Absolute Values," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 399-410, December.
    15. Henk Kiers, 1995. "Maximization of sums of quotients of quadratic forms and some generalizations," Psychometrika, Springer;The Psychometric Society, vol. 60(2), pages 221-245, June.
    16. Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
    17. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    18. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    19. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    20. Cook, Wade D. & Zhu, Joe, 2007. "Within-group common weights in DEA: An analysis of power plant efficiency," European Journal of Operational Research, Elsevier, vol. 178(1), pages 207-216, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:179:y:2018:i:1:d:10.1007_s10957-018-1342-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.