IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i1d10.1007_s10845-023-02233-x.html
   My bibliography  Save this article

Multi-source wafer map retrieval based on contrastive learning for root cause analysis in semiconductor manufacturing

Author

Listed:
  • Wei-Jyun Hong

    (National Taiwan University)

  • Chia-Yu Shen

    (National Taiwan University)

  • Pei-Yuan Wu

    (National Taiwan University)

Abstract

In semiconductor manufacturing, wafer yield is a key success factor to determine profits. Since yield improvement involves capturing the faulty manufacturing steps from hundreds of wafer manufacturing steps, which requires a lot of time and manpower, previous studies employ wafer bin map fault type recognition model or wafer bin map retrieval model for guessing which manufacturing steps likely to fail and examine them first. However, existing methods still lack of the ability to directly capture the faulty manufacturing steps. Capturing the faulty manufacturing steps is critical as engineers can correct the erroneous step among hundreds of manufacturing steps to increase yields at minimal cost. The objective of our study is to find out the historical wafer defect maps that are highly reflective of erroneous manufacturing steps by querying a wafer bin map. A retrieval model emerges to directly rank the wafer defect maps to capture the most possible faulty manufacturing step, namely multi-source wafer map retrieval model. Although existing multi source image retrieval models can eliminate the visual gap between wafer maps from different sources, most of these methods focus on finding semantically related samples (e.g. of the same defect fault type) and ignore the spatial significance that should be considered in multi-source wafer map retrieval, such as various sizes, shapes and locations of defect patterns on wafer maps. This study applies a contrastive learning based approach to address the visual gap between wafer maps from different sources, which also takes spatial information into account. This study also adapts a mixed sample strategy to address the visual gap and applies pixel-wise multiplication between wafer maps from different sources to indicate common defect locations. The effectiveness of our proposed retrieval approach is supported by testing results on in-line production wafer map datasets.

Suggested Citation

  • Wei-Jyun Hong & Chia-Yu Shen & Pei-Yuan Wu, 2025. "Multi-source wafer map retrieval based on contrastive learning for root cause analysis in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 259-270, January.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:1:d:10.1007_s10845-023-02233-x
    DOI: 10.1007/s10845-023-02233-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02233-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02233-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seyoung Park & Jaeyeon Jang & Chang Ouk Kim, 2021. "Discriminative feature learning and cluster-based defect label reconstruction for reducing uncertainty in wafer bin map labels," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 251-263, January.
    2. Hsu, Shao-Chung & Chien, Chen-Fu, 2007. "Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing," International Journal of Production Economics, Elsevier, vol. 107(1), pages 88-103, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Shu-Kai S. & Chiu, Shang-Hao, 2024. "A new ViT-Based augmentation framework for wafer map defect classification to enhance the resilience of semiconductor supply chains," International Journal of Production Economics, Elsevier, vol. 273(C).
    2. Chen-Fu Chien & Hsin-Jung Wu, 2024. "Integrated circuit probe card troubleshooting based on rough set theory for advanced quality control and an empirical study," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 275-287, January.
    3. Chen-Fu Chien & Chiao-Wen Liu & Shih-Chung Chuang, 2017. "Analysing semiconductor manufacturing big data for root cause detection of excursion for yield enhancement," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5095-5107, September.
    4. Chia-Yu Hsu & Ju-Chien Chien, 2022. "Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 831-844, March.
    5. Eduardo Oliveira & Vera L. Miguéis & José L. Borges, 2023. "Automatic root cause analysis in manufacturing: an overview & conceptualization," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2061-2078, June.
    6. Dutta, Debprotim & Bose, Indranil, 2015. "Managing a Big Data project: The case of Ramco Cements Limited," International Journal of Production Economics, Elsevier, vol. 165(C), pages 293-306.
    7. Wenhan Fu & Chen-Fu Chien & Lizhen Tang, 2022. "Bayesian network for integrated circuit testing probe card fault diagnosis and troubleshooting to empower Industry 3.5 smart production and an empirical study," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 785-798, March.
    8. Tongwha Kim & Kamran Behdinan, 2023. "Advances in machine learning and deep learning applications towards wafer map defect recognition and classification: a review," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3215-3247, December.
    9. Chen-Fu Chien & Chung-Jen Kuo & Chih-Min Yu, 2020. "Tool allocation to smooth work-in-process for cycle time reduction and an empirical study," Annals of Operations Research, Springer, vol. 290(1), pages 1009-1033, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:1:d:10.1007_s10845-023-02233-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.