IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i1d10.1007_s10845-020-01571-4.html
   My bibliography  Save this article

Discriminative feature learning and cluster-based defect label reconstruction for reducing uncertainty in wafer bin map labels

Author

Listed:
  • Seyoung Park

    (Yonsei University)

  • Jaeyeon Jang

    (Yonsei University)

  • Chang Ouk Kim

    (Yonsei University)

Abstract

Many studies have been conducted to improve wafer bin map (WBM) defect classification performance because accurate WBM classification can provide information about abnormal processes causing a decrease in yield. However, in the actual manufacturing field, the manual labeling performed by engineers leads to a high level of uncertainty. Label uncertainty has been a major cause of the reduction in WBM classification system performance. In this paper, we propose a class label reconstruction method for subdividing a defect class with various patterns into several groups, creating a new class for defect samples that cannot be categorized into known classes and detecting unknown defects. The proposed method performs discriminative feature learning of the Siamese network and repeated cross-learning of the class label reconstruction based on Gaussian means clustering in a learned feature space. We verified the proposed method using a real-world WBM dataset. In a situation where there the class labels of the training dataset were corrupted, the proposed method could increase the classification accuracy of the test dataset by enabling the corrupted sample to find its original class label. As a result, the accuracy of the proposed method was up to 7.8% higher than that of the convolutional neural network (CNN). Furthermore, through the proposed class label reconstruction, we found a new mixed-type defect class that had not been found until now, and we detected new types of unknown defects that were not used for learning with an average accuracy of over 73%.

Suggested Citation

  • Seyoung Park & Jaeyeon Jang & Chang Ouk Kim, 2021. "Discriminative feature learning and cluster-based defect label reconstruction for reducing uncertainty in wafer bin map labels," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 251-263, January.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01571-4
    DOI: 10.1007/s10845-020-01571-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01571-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01571-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinho Kim & Youngmin Lee & Heeyoung Kim, 2018. "Detection and clustering of mixed-type defect patterns in wafer bin maps," IISE Transactions, Taylor & Francis Journals, vol. 50(2), pages 99-111, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tae San Kim & Jong Wook Lee & Won Kyung Lee & So Young Sohn, 2022. "Novel method for detection of mixed-type defect patterns in wafer maps based on a single shot detector algorithm," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1715-1724, August.
    2. Tongwha Kim & Kamran Behdinan, 2023. "Advances in machine learning and deep learning applications towards wafer map defect recognition and classification: a review," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3215-3247, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01571-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.