Machine learning guided design of experiments to accelerate exploration of a material extrusion process parameter space
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-023-02255-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ruoqing Zhu & Donglin Zeng & Michael R. Kosorok, 2015. "Reinforcement Learning Trees," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1770-1784, December.
- Mengrui Zhu & Yun Yang & Xiaobing Feng & Zhengchun Du & Jianguo Yang, 2023. "Robust modeling method for thermal error of CNC machine tools based on random forest algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 2013-2026, April.
- Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
- Jingchao Jiang & Yi Xiong & Zhiyuan Zhang & David W. Rosen, 2022. "Machine learning integrated design for additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1073-1086, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
- Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
- Crystal T. Nguyen & Daniel J. Luckett & Anna R. Kahkoska & Grace E. Shearrer & Donna Spruijt‐Metz & Jaimie N. Davis & Michael R. Kosorok, 2020. "Estimating individualized treatment regimes from crossover designs," Biometrics, The International Biometric Society, vol. 76(3), pages 778-788, September.
- Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
- Silke Janitza & Ender Celik & Anne-Laure Boulesteix, 2018. "A computationally fast variable importance test for random forests for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 885-915, December.
- Iñigo Flores Ituarte & Suraj Panicker & Hari P. N. Nagarajan & Eric Coatanea & David W. Rosen, 2023. "Optimisation-driven design to explore and exploit the process–structure–property–performance linkages in digital manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 219-241, January.
- Pedro Delicado & Daniel Peña, 2023. "Understanding complex predictive models with ghost variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 107-145, March.
- José A. Ferreira, 2022. "Models under which random forests perform badly; consequences for applications," Computational Statistics, Springer, vol. 37(4), pages 1839-1854, September.
- Susan Athey & Julie Tibshirani & Stefan Wager, 2016.
"Generalized Random Forests,"
Papers
1610.01271, arXiv.org, revised Apr 2018.
- Athey, Susan & Tibshirani, Julie & Wager, Stefan, 2017. "Generalized Random Forests," Research Papers 3575, Stanford University, Graduate School of Business.
- Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
- Chou, Yuntsai & Lin, Wei, 2024. "Blockbuster or Flop? Effects of Social Media on the Chinese Film Market," 24th ITS Biennial Conference, Seoul 2024. New bottles for new wine: digital transformation demands new policies and strategies 302460, International Telecommunications Society (ITS).
- Liu, Yehong & Yin, Guosheng, 2020. "The Delaunay triangulation learner and its ensembles," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Yi Liu & Veronika Ročková & Yuexi Wang, 2021. "Variable selection with ABC Bayesian forests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 453-481, July.
- Muhammad S. Aliero & Muhammad F. Pasha & David T. Smith & Imran Ghani & Muhammad Asif & Seung Ryul Jeong & Moveh Samuel, 2022. "Non-Intrusive Room Occupancy Prediction Performance Analysis Using Different Machine Learning Techniques," Energies, MDPI, vol. 15(23), pages 1-22, December.
- You-Shyang Chen & Jieh-Ren Chang & Ying-Hsun Hung & Jia-Hsien Lai, 2023. "Oversampling Application of Identifying 3D Selective Laser Sintering Yield by Hybrid Mathematical Classification Models," Mathematics, MDPI, vol. 11(14), pages 1-30, July.
- Tongke Yuan & Zhifeng Sun & Shihao Ma, 2019. "Gearbox Fault Prediction of Wind Turbines Based on a Stacking Model and Change-Point Detection," Energies, MDPI, vol. 12(22), pages 1-20, November.
- Chun Fai Lui & Ahmed Maged & Min Xie, 2024. "A novel image feature based self-supervised learning model for effective quality inspection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3543-3558, October.
More about this item
Keywords
Additive manufacturing; Machine learning; Interlayer fracture toughness; ABS; FUELS;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:1:d:10.1007_s10845-023-02255-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.