Data mining for fast and accurate makespan estimation in machining workshops
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-020-01585-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Junliang Wang & Jie Zhang, 2016. "Big data analytics for forecasting cycle time in semiconductor wafer fabrication system," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7231-7244, December.
- H.M. Raaymakers, Wenny & Will M. Bertrand, J. & C. Fransoo, Jan, 2001. "Makespan estimation in batch process industries using aggregate resource and job set characteristics," International Journal of Production Economics, Elsevier, vol. 70(2), pages 145-161, March.
- Chaoqun Duan & Chao Deng & Abolfazl Gharaei & Jun Wu & Bingran Wang, 2018. "Selective maintenance scheduling under stochastic maintenance quality with multiple maintenance actions," International Journal of Production Research, Taylor & Francis Journals, vol. 56(23), pages 7160-7178, December.
- Raaymakers, W. H. M. & Weijters, A. J. M. M., 2003. "Makespan estimation in batch process industries: A comparison between regression analysis and neural networks," European Journal of Operational Research, Elsevier, vol. 145(1), pages 14-30, February.
- Chen, Kunlong & Jiang, Jiuchun & Zheng, Fangdan & Chen, Kunjin, 2018. "A novel data-driven approach for residential electricity consumption prediction based on ensemble learning," Energy, Elsevier, vol. 150(C), pages 49-60.
- Xiao, Jianli, 2019. "SVM and KNN ensemble learning for traffic incident detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 29-35.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vineet Jain & Tilak Raj, 2018. "An adaptive neuro-fuzzy inference system for makespan estimation of flexible manufacturing system assembly shop: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1302-1314, December.
- Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
- Raaymakers, W. H. M. & Weijters, A. J. M. M., 2003. "Makespan estimation in batch process industries: A comparison between regression analysis and neural networks," European Journal of Operational Research, Elsevier, vol. 145(1), pages 14-30, February.
- Shijie Guo & Shufeng Tang & Dongsheng Zhang, 2019. "A Recognition Methodology for the Key Geometric Errors of a Multi-Axis Machine Tool Based on Accuracy Retentivity Analysis," Complexity, Hindawi, vol. 2019, pages 1-21, November.
- Moriguchi, Kai & Ueki, Tatsuhito & Saito, Masashi, 2020. "Establishing optimal forest harvesting regulation with continuous approximation," Operations Research Perspectives, Elsevier, vol. 7(C).
- Hao, Hongchang & Ma, Zhe & Wang, Anjian & Xing, Wanli & Song, Hao & Zhao, Pei & Wei, Jiangqiao & Zheng, Shuxian, 2023. "Modeling and assessing the robustness of the lithium global trade system against cascading failures," Resources Policy, Elsevier, vol. 85(PB).
- Dilaver, Halit Metehan & Akçay, Alp & van Houtum, Geert-Jan, 2023. "Integrated planning of asset-use and dry-docking for a fleet of maritime assets," International Journal of Production Economics, Elsevier, vol. 256(C).
- Guiliang Gong & Raymond Chiong & Qianwang Deng & Qiang Luo, 2020. "A memetic algorithm for multi-objective distributed production scheduling: minimizing the makespan and total energy consumption," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1443-1466, August.
- Li, Yuni & Xiao, Jianli, 2020. "Traffic peak period detection using traffic index cloud maps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
- M. López-Campos & F. Kristjanpoller & P. Viveros & R. Pascual, 2018. "Reliability Assessment Methodology for Massive Manufacturing Using Multi-Function Equipment," Complexity, Hindawi, vol. 2018, pages 1-8, February.
- Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
- Junwei Ma & Xiao Liu & Xiaoxu Niu & Yankun Wang & Tao Wen & Junrong Zhang & Zongxing Zou, 2020. "Forecasting of Landslide Displacement Using a Probability-Scheme Combination Ensemble Prediction Technique," IJERPH, MDPI, vol. 17(13), pages 1-23, July.
- Nicholas Fiorentini & Massimo Losa, 2020. "Long-Term-Based Road Blackspot Screening Procedures by Machine Learning Algorithms," Sustainability, MDPI, vol. 12(15), pages 1-23, July.
- Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
- Wenke Gao, 2020. "An extended geometric process and its application in replacement policy," Journal of Risk and Reliability, , vol. 234(1), pages 88-103, February.
- Lei He & Mathijs Weerdt & Neil Yorke-Smith, 2020. "Time/sequence-dependent scheduling: the design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1051-1078, April.
- Xia, Tangbin & Si, Guojin & Shi, Guo & Zhang, Kaigan & Xi, Lifeng, 2022. "Optimal selective maintenance scheduling for series–parallel systems based on energy efficiency optimization," Applied Energy, Elsevier, vol. 314(C).
- Wakiru, James & Pintelon, Liliane & Muchiri, Peter N. & Chemweno, Peter K., 2021. "Integrated remanufacturing, maintenance and spares policies towards life extension of a multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Hadjout, D. & Torres, J.F. & Troncoso, A. & Sebaa, A. & Martínez-Álvarez, F., 2022. "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market," Energy, Elsevier, vol. 243(C).
- Ghorbani, Milad & Nourelfath, Mustapha & Gendreau, Michel, 2022. "A two-stage stochastic programming model for selective maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
More about this item
Keywords
Makespan estimation; Ensemble of BPNN; Gene expression programming; Clustering; Genetic algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:2:d:10.1007_s10845-020-01585-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.