IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v29y2018i5d10.1007_s10845-017-1381-8.html
   My bibliography  Save this article

Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth

Author

Listed:
  • D. Yu. Pimenov

    (South Ural State University)

  • A. Bustillo

    (University of Burgos)

  • T. Mikolajczyk

    (UTP University of Science and Technology)

Abstract

Nowadays, face milling is one of the most widely used machining processes for the generation of flat surfaces. Following international standards, the quality of a machined surface is measured in terms of surface roughness, Ra, a parameter that will decrease with increased tool wear. So, cutting inserts of the milling tool have to be changed before a given surface quality threshold is exceeded. The use of artificial intelligence methods is suggested in this paper for real-time prediction of surface roughness deviations, depending on the main drive power, and taking tool wear, $$V_{B}$$ V B into account. This method ensures comprehensive use of the potential of modern CNC machines that are able to monitor the main drive power, N, in real-time. It can likewise estimate the three parameters -maximum tool wear, machining time, and cutting power- that are required to generate a given surface roughness, thereby making the most efficient use of the cutting tool. A series of artificial intelligence methods are tested: random forest (RF), standard Multilayer perceptrons (MLP), Regression Trees, and radial-based functions. Random forest was shown to have the highest model accuracy, followed by regression trees, displaying higher accuracy than the standard MLP and the radial-basis function. Moreover, RF techniques are easily tuned and generate visual information for direct use by the process engineer, such as the linear relationships between process parameters and roughness, and thresholds for avoiding rapid tool wear. All of this information can be directly extracted from the tree structure or by drawing 3D charts plotting two process inputs and the predicted roughness depending on workshop requirements.

Suggested Citation

  • D. Yu. Pimenov & A. Bustillo & T. Mikolajczyk, 2018. "Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1045-1061, June.
  • Handle: RePEc:spr:joinma:v:29:y:2018:i:5:d:10.1007_s10845-017-1381-8
    DOI: 10.1007/s10845-017-1381-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-017-1381-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-017-1381-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanxi Zhang & Deyong You & Xiangdong Gao & Congyi Wang & Yangjin Li & Perry P. Gao, 2020. "Real-time monitoring of high-power disk laser welding statuses based on deep learning framework," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 799-814, April.
    2. Zengya Zhao & Sibao Wang & Zehua Wang & Shilong Wang & Chi Ma & Bo Yang, 2022. "Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case study in five-axis machining," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 943-952, April.
    3. Ahmed Elsheikh & Soumaya Yacout & Mohamed-Salah Ouali & Yasser Shaban, 2020. "Failure time prediction using adaptive logical analysis of survival curves and multiple machining signals," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 403-415, February.
    4. Ruiyang Hao & Bingyu Lu & Ying Cheng & Xiu Li & Biqing Huang, 2021. "A steel surface defect inspection approach towards smart industrial monitoring," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1833-1843, October.
    5. Dragan Rodić & Milenko Sekulić & Marin Gostimirović & Vladimir Pucovsky & Davorin Kramar, 2021. "Fuzzy logic and sub-clustering approaches to predict main cutting force in high-pressure jet assisted turning," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 21-36, January.
    6. Durga Prasad Penumuru & Sreekumar Muthuswamy & Premkumar Karumbu, 2020. "Identification and classification of materials using machine vision and machine learning in the context of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1229-1241, June.
    7. Ki Bum Lee & Chang Ouk Kim, 2020. "Recurrent feature-incorporated convolutional neural network for virtual metrology of the chemical mechanical planarization process," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 73-86, January.
    8. Omojola Awogbemi & Daramy Vandi Von Kallon & Kazeem Aderemi Bello, 2022. "Resource Recycling with the Aim of Achieving Zero-Waste Manufacturing," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    9. Wo Jae Lee & Kevin Xia & Nancy L. Denton & Bruno Ribeiro & John W. Sutherland, 2021. "Development of a speed invariant deep learning model with application to condition monitoring of rotating machinery," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 393-406, February.
    10. Andres Bustillo & Danil Yu. Pimenov & Mozammel Mia & Wojciech Kapłonek, 2021. "Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 895-912, March.
    11. Danil Yu Pimenov & Andres Bustillo & Szymon Wojciechowski & Vishal S. Sharma & Munish K. Gupta & Mustafa Kuntoğlu, 2023. "Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2079-2121, June.
    12. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    13. Ardamanbir Singh Sidhu & Sehijpal Singh & Raman Kumar & Danil Yurievich Pimenov & Khaled Giasin, 2021. "Prioritizing Energy-Intensive Machining Operations and Gauging the Influence of Electric Parameters: An Industrial Case Study," Energies, MDPI, vol. 14(16), pages 1-39, August.
    14. Victor Flores & Brian Keith, 2019. "Gradient Boosted Trees Predictive Models for Surface Roughness in High-Speed Milling in the Steel and Aluminum Metalworking Industry," Complexity, Hindawi, vol. 2019, pages 1-15, July.
    15. Andres Bustillo & Roberto Reis & Alisson R. Machado & Danil Yu. Pimenov, 2022. "Improving the accuracy of machine-learning models with data from machine test repetitions," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 203-221, January.
    16. J. Santhakumar & U. Mohammed Iqbal, 2021. "Role of trochoidal machining process parameter and chip morphology studies during end milling of AISI D3 steel," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 649-665, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:29:y:2018:i:5:d:10.1007_s10845-017-1381-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.