Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-020-01645-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- D. Yu. Pimenov & A. Bustillo & T. Mikolajczyk, 2018. "Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1045-1061, June.
- Ercan Oztemel & Samet Gursev, 2020. "Literature review of Industry 4.0 and related technologies," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 127-182, January.
- Maciej Grzenda & Andres Bustillo, 2019. "Semi-supervised roughness prediction with partly unlabeled vibration data streams," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 933-945, February.
- Doriana M. D’Addona & A. M. M. Sharif Ullah & D. Matarazzo, 2017. "Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1285-1301, August.
- PoTsang B. Huang & Huang-Jie Zhang & Yi-Ching Lin, 2019. "Development of a Grey online modeling surface roughness monitoring system in end milling operations," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1923-1936, April.
- Andrés Bustillo & Juan J. Rodríguez, 2014. "Online breakage detection of multitooth tools using classifier ensembles for imbalanced data," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 2590-2602, December.
- Pedro Santos & Jesús Maudes & Andres Bustillo, 2018. "Identifying maximum imbalance in datasets for fault diagnosis of gearboxes," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 333-351, February.
- Editors, 2014. "International Journal of Systems Science," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 1-1, December.
- Emel Kuram & Babur Ozcelik, 2016. "Micro-milling performance of AISI 304 stainless steel using Taguchi method and fuzzy logic modelling," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 817-830, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Danil Yu Pimenov & Andres Bustillo & Szymon Wojciechowski & Vishal S. Sharma & Munish K. Gupta & Mustafa Kuntoğlu, 2023. "Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2079-2121, June.
- J. Apolinar Muñoz Rodríguez, 2022. "Multi-Objective Optimization via GA Based on Micro Laser Line Scanning Data for Micro-Scale Surface Modeling," Energies, MDPI, vol. 15(18), pages 1-23, September.
- Mohamed Kais Msakni & Anders Risan & Peter Schütz, 2023. "Using machine learning prediction models for quality control: a case study from the automotive industry," Computational Management Science, Springer, vol. 20(1), pages 1-28, December.
- Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Danil Yu Pimenov & Andres Bustillo & Szymon Wojciechowski & Vishal S. Sharma & Munish K. Gupta & Mustafa Kuntoğlu, 2023. "Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2079-2121, June.
- Andres Bustillo & Roberto Reis & Alisson R. Machado & Danil Yu. Pimenov, 2022. "Improving the accuracy of machine-learning models with data from machine test repetitions," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 203-221, January.
- Victor Flores & Brian Keith, 2019. "Gradient Boosted Trees Predictive Models for Surface Roughness in High-Speed Milling in the Steel and Aluminum Metalworking Industry," Complexity, Hindawi, vol. 2019, pages 1-15, July.
- Dragan Rodić & Milenko Sekulić & Marin Gostimirović & Vladimir Pucovsky & Davorin Kramar, 2021. "Fuzzy logic and sub-clustering approaches to predict main cutting force in high-pressure jet assisted turning," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 21-36, January.
- Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
- Pauline Ong & Choon Sin Ho & Desmond Daniel Vui Sheng Chin & Chee Kiong Sia & Chuan Huat Ng & Md Saidin Wahab & Abduladim Salem Bala, 2019. "Diameter prediction and optimization of hot extrusion-synthesized polypropylene filament using statistical and soft computing techniques," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1957-1972, April.
- Antonio Del Prete & Rodolfo Franchi & Stefania Cacace & Quirico Semeraro, 2020. "Optimization of cutting conditions using an evolutive online procedure," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 481-499, February.
- Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
- Moina Ajmeri & Ahmad Ali, 2017. "Analytical design of modified Smith predictor for unstable second-order processes with time delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(8), pages 1671-1681, June.
- Viet, Nguyen Quoc & Behdani, Behzad & Bloemhof, Jacqueline, 2018. "Value of Information to Improve Daily Operations in High-Density Logistics," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 9(1), January.
- Tiago Afonso & Anabela C. Alves & Paula Carneiro, 2021. "Lean Thinking, Logistic and Ergonomics: Synergetic Triad to Prepare Shop Floor Work Systems to Face Pandemic Situations," International Journal of Global Business and Competitiveness, Springer, vol. 16(1), pages 62-76, December.
- Shuting Wang & Jie Meng & Yuanlong Xie & Liquan Jiang & Han Ding & Xinyu Shao, 2023. "Reference training system for intelligent manufacturing talent education: platform construction and curriculum development," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1125-1164, March.
- Qiu, Ruozhen & Sun, Minghe & Lim, Yun Fong, 2017. "Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 880-892.
- P.R. Ouyang & V. Pano & T. Dam, 2015. "PID position domain control for contour tracking," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(1), pages 111-124, January.
- M. Kang & J. Cheong & H.M. Do & Y. Son & S.-I. Niculescu, 2017. "A practical iterative PID tuning method for mechanical systems using parameter chart," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(13), pages 2887-2900, October.
- Md. Majharul Haque & Suraiya Pervin & Anowar Hossain & Zerina Begum, 2020. "Approaches and Trends of Automatic Bangla Text Summarization: Challenges and Opportunities," International Journal of Technology Diffusion (IJTD), IGI Global, vol. 11(4), pages 67-83, October.
- Xiaoyu Zhan & Delia Mioara Popescu & Valentin Radu, 2020. "Challenges for Romanian Entrepreneurs in Managing Remote Workers," Book chapters-LUMEN Proceedings, in: Marcin Waldemar STANIEWSKI & Valentina VASILE & Adriana Grigorescu (ed.), International Conference Innovative Business Management & Global Entrepreneurship (IBMAGE 2020), edition 1, volume 14, chapter 49, pages 670-687, Editura Lumen.
- Christoph March & Ina Schieferdecker, 2021.
"Technological Sovereignty as Ability, Not Autarky,"
CESifo Working Paper Series
9139, CESifo.
- Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, not Autarky," Munich Papers in Political Economy 12, Munich School of Politics and Public Policy and the School of Management at the Technical University of Munich.
- Mourad Kchaou & Ahmed El-Hajjaji, 2017. "Resilient sliding mode control for discrete-time descriptor fuzzy systems with multiple time delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(2), pages 288-301, January.
- Changyin Sun & Qing Wang & Yao Yu, 2017. "Robust output containment control of multi-agent systems with unknown heterogeneous nonlinear uncertainties in directed networks," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(6), pages 1173-1181, April.
More about this item
Keywords
Face milling; Wear; Tool life; Tool condition monitoring; Flatness deviation; Cutting power; Random forest; SMOTE;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:3:d:10.1007_s10845-020-01645-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.