IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i1d10.1007_s10845-020-01659-x.html
   My bibliography  Save this article

Hierarchical multistrategy genetic algorithm for integrated process planning and scheduling

Author

Listed:
  • Xu Zhang

    (Sichuan University)

  • Zhixue Liao

    (Southwestern University of Finance and Economics)

  • Lichao Ma

    (Sichuan University)

  • Jin Yao

    (Sichuan University)

Abstract

To adapt to the flexibility characteristics of modern manufacturing enterprises and the dynamics of manufacturing subsystems, promote collaboration in manufacturing functions, and allocate production resources in a reasonable manner, a mathematical model of integrated process planning and scheduling (IPPS) problems was developed to optimize the global performance of manufacturing systems. To solve IPPS problems, a hierarchical multistrategy genetic algorithm was developed. To address the multidimensional flexibility of IPPS problems, a chromosome coding method was designed to include a scheduling layer, a process layer, a machine layer, and a logic layer. Multiple crossover operators and mutation operators with polytypic global or local optimization strategies were used during the genetic operation stage to expand the algorithm’s search dimension and maintain the population’s diversity, thereby addressing the problems of population evolution stagnation and premature convergence. The effectiveness of the algorithm was verified by benchmark testing in the example simulation process. The test data show that if the makespan is taken as the optimization target, the proposed genetic algorithm performs better in solving IPPS problems with high complexity. The use of multistrategy genetic operators and logic layer coding makes a significant contribution to the improved performance of the algorithm reported in this paper.

Suggested Citation

  • Xu Zhang & Zhixue Liao & Lichao Ma & Jin Yao, 2022. "Hierarchical multistrategy genetic algorithm for integrated process planning and scheduling," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 223-246, January.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:1:d:10.1007_s10845-020-01659-x
    DOI: 10.1007/s10845-020-01659-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01659-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01659-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kis, Tamas, 2003. "Job-shop scheduling with processing alternatives," European Journal of Operational Research, Elsevier, vol. 151(2), pages 307-332, December.
    2. Li, Xinyu & Shao, Xinyu & Gao, Liang & Qian, Weirong, 2010. "An effective hybrid algorithm for integrated process planning and scheduling," International Journal of Production Economics, Elsevier, vol. 126(2), pages 289-298, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Zhang & T. N. Wong, 2018. "Integrated process planning and scheduling: an enhanced ant colony optimization heuristic with parameter tuning," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 585-601, March.
    2. Barzanji, Ramin & Naderi, Bahman & Begen, Mehmet A., 2020. "Decomposition algorithms for the integrated process planning and scheduling problem," Omega, Elsevier, vol. 93(C).
    3. Servranckx, Tom & Vanhoucke, Mario, 2019. "Strategies for project scheduling with alternative subgraphs under uncertainty: similar and dissimilar sets of schedules," European Journal of Operational Research, Elsevier, vol. 279(1), pages 38-53.
    4. Boxuan Zhao & Jianmin Gao & Kun Chen & Ke Guo, 2018. "Two-generation Pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 93-108, January.
    5. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    6. Linda Zhang & Carman K.M. Lee & Pervaiz Akhtar, 2020. "Towards customization: Evaluation of integrated sales, product, and production configuration," Post-Print hal-03276827, HAL.
    7. Burdett, R.L. & Kozan, E., 2010. "A disjunctive graph model and framework for constructing new train schedules," European Journal of Operational Research, Elsevier, vol. 200(1), pages 85-98, January.
    8. Xue, Guisen & Felix Offodile, O. & Zhou, Hong & Troutt, Marvin D., 2011. "Integrated production planning with sequence-dependent family setup times," International Journal of Production Economics, Elsevier, vol. 131(2), pages 674-681, June.
    9. Tamssaouet, Karim & Dauzère-Pérès, Stéphane, 2023. "A general efficient neighborhood structure framework for the job-shop and flexible job-shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 311(2), pages 455-471.
    10. Zhang, Linda L. & Lee, Carman K.M. & Akhtar, Pervaiz, 2020. "Towards customization: Evaluation of integrated sales, product, and production configuration," International Journal of Production Economics, Elsevier, vol. 229(C).
    11. Servranckx, Tom & Vanhoucke, Mario, 2019. "A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs," European Journal of Operational Research, Elsevier, vol. 273(3), pages 841-860.
    12. Ma, Yujie & Du, Gang & Jiao, Roger J., 2020. "Optimal crowdsourcing contracting for reconfigurable process planning in open manufacturing: A bilevel coordinated optimization approach," International Journal of Production Economics, Elsevier, vol. 228(C).
    13. Drótos, Márton & Erdos, Gábor & Kis, Tamás, 2009. "Computing lower and upper bounds for a large-scale industrial job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 296-306, August.
    14. Rossit, Daniel Alejandro & Tohmé, Fernando & Frutos, Mariano, 2018. "The Non-Permutation Flow-Shop scheduling problem: A literature review," Omega, Elsevier, vol. 77(C), pages 143-153.
    15. Hyun Cheol Lee & Chunghun Ha, 2019. "Sustainable Integrated Process Planning and Scheduling Optimization Using a Genetic Algorithm with an Integrated Chromosome Representation," Sustainability, MDPI, vol. 11(2), pages 1-23, January.
    16. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    17. Zhang, Luping & Wong, T.N., 2015. "An object-coding genetic algorithm for integrated process planning and scheduling," European Journal of Operational Research, Elsevier, vol. 244(2), pages 434-444.
    18. Čapek, R. & Šůcha, P. & Hanzálek, Z., 2012. "Production scheduling with alternative process plans," European Journal of Operational Research, Elsevier, vol. 217(2), pages 300-311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:1:d:10.1007_s10845-020-01659-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.