IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v503y2018icp591-603.html
   My bibliography  Save this article

Ant pheromone route guidance strategy in intelligent transportation systems

Author

Listed:
  • Wu, Jinchao
  • Chen, Bokui
  • Zhang, Kai
  • Zhou, Jun
  • Miao, Lixin

Abstract

Based on the cellular automaton model and the concept of ant pheromone, this paper proposes a new route guidance strategy, called the ant pheromone route guidance strategy, in which the vehicles are regarded as special types of ants and their traffic information is regarded as the ant pheromone. To evaluate its performance, the new route guidance strategy was applied and compared with other three typical route guidance strategies under three different route scenarios, respectively, with open boundary conditions based on the Nagel–Schreckenberg cellular automaton model. First, in a symmetrical two-route scenario with two exits, results showed that the new route guidance strategy and vacancy length route guidance strategy were optimal. They outperformed the other strategies in terms of the value, stability, and balance of vehicle number, and the average speed and average flux on each route. To understand the impact of the strategy on traffic states, flux–density evolution process was studied. In addition, the influence of evaporation rate was also investigated. Second, in an asymmetrical two-route scenario with one exit, the simulation results also proved that ant pheromone route guidance strategy and vacancy length route guidance strategy were the best. Finally, in a symmetrical two-route scenario with a traffic accident, we compared the new route guidance strategy with the vacancy length route guidance strategy. Results indicated that the new route guidance strategy has distinct advantages. In short, in all three route scenarios we investigated, the ant pheromone route guidance strategy performed best.

Suggested Citation

  • Wu, Jinchao & Chen, Bokui & Zhang, Kai & Zhou, Jun & Miao, Lixin, 2018. "Ant pheromone route guidance strategy in intelligent transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 591-603.
  • Handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:591-603
    DOI: 10.1016/j.physa.2018.02.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118301225
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qi-Lang & Wang, Bing-Hong & Liu, Mu-Ren, 2011. "An improved cellular automaton traffic model considering gap-dependent delay probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1356-1362.
    2. Yang, Da & Qiu, Xiaoping & Yu, Dan & Sun, Ruoxiao & Pu, Yun, 2015. "A cellular automata model for car–truck heterogeneous traffic flow considering the car–truck following combination effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 62-72.
    3. Bokui Chen & Xiaoyan Sun & Hua Wei & Chuanfei Dong & Binghong Wang, 2011. "Piecewise Function Feedback Strategy In Intelligent Traffic Systems With A Speed Limit Bottleneck," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 849-860.
    4. I. Prigogine & F. C. Andrews, 1960. "A Boltzmann-Like Approach for Traffic Flow," Operations Research, INFORMS, vol. 8(6), pages 789-797, December.
    5. Yang, Haifei & Lu, Jian & Hu, Xiaojian & Jiang, Jun, 2013. "A cellular automaton model based on empirical observations of a driver’s oscillation behavior reproducing the findings from Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4009-4018.
    6. Garcia-Martinez, C. & Cordon, O. & Herrera, F., 2007. "A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP," European Journal of Operational Research, Elsevier, vol. 180(1), pages 116-148, July.
    7. Lárraga, M.E. & Alvarez-Icaza, L., 2010. "Cellular automaton model for traffic flow based on safe driving policies and human reactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5425-5438.
    8. Dong, Chuan-Fei & Ma, Xu & Wang, Guan-Wen & Sun, Xiao-Yan & Wang, Bing-Hong, 2009. "Prediction feedback in intelligent traffic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4651-4657.
    9. Prasanna Balaprakash & Mauro Birattari & Thomas Stützle & Marco Dorigo, 2015. "Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers," Computational Optimization and Applications, Springer, vol. 61(2), pages 463-487, June.
    10. Wahle, Joachim & Bazzan, Ana Lúcia C & Klügl, Franziska & Schreckenberg, Michael, 2000. "Decision dynamics in a traffic scenario," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 669-681.
    11. Chen, Bokui & Xie, Yanbo & Tong, Wei & Dong, Chuanfei & Shi, Dongmei & Wang, Binghong, 2012. "A comprehensive study of advanced information feedbacks in real-time intelligent traffic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2730-2739.
    12. Meng, Jian-ping & Dai, Shi-qiang & Dong, Li-yun & Zhang, Jie-fang, 2007. "Cellular automaton model for mixed traffic flow with motorcycles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 470-480.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Zhongjun & Chen, Bokui & Zhang, Lele & Jiang, Rui & Wu, Yao & Ding, Jianxun, 2019. "Segment travel time route guidance strategy in advanced traveler information systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    2. Jiang, Yanqun & Ding, Zhongjun & Zhou, Jun & Wu, Peng & Chen, Bokui, 2022. "Estimation of traffic emissions in a polycentric urban city based on a macroscopic approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    3. Cui, Nan & Chen, Bokui & Zhang, Kai & Zhang, Yi & Liu, Xiaotong & Zhou, Jun, 2019. "Effects of route guidance strategies on traffic emissions in intelligent transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 32-44.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Nan & Chen, Bokui & Zhang, Kai & Zhang, Yi & Liu, Xiaotong & Zhou, Jun, 2019. "Effects of route guidance strategies on traffic emissions in intelligent transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 32-44.
    2. Ding, Zhongjun & Chen, Bokui & Zhang, Lele & Jiang, Rui & Wu, Yao & Ding, Jianxun, 2019. "Segment travel time route guidance strategy in advanced traveler information systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. Kong, Dewen & Sun, Lishan & Li, Jia & Xu, Yan, 2021. "Modeling cars and trucks in the heterogeneous traffic based on car–truck combination effect using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    4. Lyu, Zelin & Hu, Xiaojian & Zhang, Fang & Liu, Tenghui & Cui, Zhiwei, 2022. "Heterogeneous traffic flow characteristics on the highway with a climbing lane under different truck percentages: The framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    5. Li, Xin & Li, Xingang & Xiao, Yao & Jia, Bin, 2016. "Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 49-62.
    6. Tang, Tie-Qiao & Yu, Qiang & Liu, Kai, 2017. "Analysis of the traffic running cost in a two-route system with feedback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 1-9.
    7. Zeng, Junwei & Qian, Yongsheng & Mi, Pengfei & Zhang, Chaoyang & Yin, Fan & Zhu, Leipeng & Xu, Dejie, 2021. "Freeway traffic flow cellular automata model based on mean velocity feedback," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    8. Zeng, Jiao-Yan & Ou, Hui & Tang, Tie-Qiao, 2019. "Feedback strategy with delay in a two-route traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    9. Chen, Bokui & Xie, Yanbo & Tong, Wei & Dong, Chuanfei & Shi, Dongmei & Wang, Binghong, 2012. "A comprehensive study of advanced information feedbacks in real-time intelligent traffic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2730-2739.
    10. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.
    11. Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
    12. Boxuan Zhao & Jianmin Gao & Kun Chen & Ke Guo, 2018. "Two-generation Pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 93-108, January.
    13. Paul Nelson & Bryan Raney, 1999. "Objectives and Benchmarks for Kinetic Theories of Vehicular Traffic," Transportation Science, INFORMS, vol. 33(3), pages 298-314, August.
    14. Maiti, Nandan & Laval, Jorge A. & Chilukuri, Bhargava Rama, 2024. "Universality of area occupancy-based fundamental diagrams in mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    15. Bittihn, Stefan & Schadschneider, Andreas, 2021. "The effect of modern traffic information on Braess’ paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    16. Karels, Vincent C.G. & Rei, Walter & Veelenturf, Lucas P. & Van Woensel, Tom, 2024. "A vehicle routing problem with multiple service agreements," European Journal of Operational Research, Elsevier, vol. 313(1), pages 129-145.
    17. Chrobok, R. & Kaumann, O. & Wahle, J. & Schreckenberg, M., 2004. "Different methods of traffic forecast based on real data," European Journal of Operational Research, Elsevier, vol. 155(3), pages 558-568, June.
    18. Chen, Jingxu & Li, Zhibin & Jiang, Hang & Zhu, Senlai & Wang, Wei, 2017. "Simulating the impacts of on-street vehicle parking on traffic operations on urban streets using cellular automation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 880-891.
    19. Selten, Reinhard & Schreckenberg, Michael & Pitz, Thomas & Chmura, Thorsten & Kube, Sebastian, 2002. "Experiments and Simulations on Day-to-Day Route Choice-Behaviour," Bonn Econ Discussion Papers 35/2002, University of Bonn, Bonn Graduate School of Economics (BGSE).
    20. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:591-603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.