Analysis of Financial Credit Risk Using Machine Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yang, Z. R. & Platt, Marjorie B. & Platt, Harlan D., 1999. "Probabilistic Neural Networks in Bankruptcy Prediction," Journal of Business Research, Elsevier, vol. 44(2), pages 67-74, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ming-Hui Huang & Roland T. Rust, 2021. "A strategic framework for artificial intelligence in marketing," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 30-50, January.
- Sajid, Muhammad & Mushtaq, Rizwan & Murtaza, Ghulam & Yahiaoui, Dorra & Pereira, Vijay, 2024. "Financial literacy, confidence and well-being: The mediating role of financial behavior," Journal of Business Research, Elsevier, vol. 182(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Haider A. Khan, 2004.
"General Conclusions: From Crisis to a Global Political Economy of Freedom,"
Palgrave Macmillan Books, in: Global Markets and Financial Crises in Asia, chapter 9, pages 193-211,
Palgrave Macmillan.
- Haider Ali Khan, 2003. "General Conclusions: From Crisis to A Global Political Economy of Freedom," CIRJE F-Series CIRJE-F-192, CIRJE, Faculty of Economics, University of Tokyo.
- Nasim Nasirpour & Alireza Mazdaki & Esmail Enayati, 2016. "The Investigation and Comparison of the Performance of Heuristic Methods in the Prediction of the Type of Auditor’s Opinion in Firms Accepted in Tehran Stock Exchange," Asian Social Science, Canadian Center of Science and Education, vol. 12(6), pages 148-148, June.
- Rogelio A. Mancisidor & Kjersti Aas, 2022. "Multimodal Generative Models for Bankruptcy Prediction Using Textual Data," Papers 2211.08405, arXiv.org, revised Feb 2024.
- S. Balcaen & H. Ooghe, 2004.
"Alternative methodologies in studies on business failure: do they produce better results than the classical statistical methods?,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
04/249, Ghent University, Faculty of Economics and Business Administration.
- Balcaen S. & Ooghe H., 2004. "Alternative methodologies in studies on business failure: do they produce better results than the classic statistical methods?," Vlerick Leuven Gent Management School Working Paper Series 2004-16, Vlerick Leuven Gent Management School.
- Sami Ben Jabeur & Youssef Fahmi, 2018. "Forecasting financial distress for French firms: a comparative study," Empirical Economics, Springer, vol. 54(3), pages 1173-1186, May.
- Salwa Kessioui & Michalis Doumpos & Constantin Zopounidis, 2023. "A Bibliometric Overview of the State-of-the-Art in Bankruptcy Prediction Methods and Applications," World Scientific Book Chapters, in: Emilios Galariotis & Alexandros Garefalakis & Christos Lemonakis & Marios Menexiadis & Constantin Zo (ed.), Governance and Financial Performance Current Trends and Perspectives, chapter 6, pages 123-153, World Scientific Publishing Co. Pte. Ltd..
- Sueyoshi, Toshiyuki & Goto, Mika, 2009. "Can R&D expenditure avoid corporate bankruptcy? Comparison between Japanese machinery and electric equipment industries using DEA-discriminant analysis," European Journal of Operational Research, Elsevier, vol. 196(1), pages 289-311, July.
- Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
- du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.
- du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
- Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
- Sami Ben Jabeur & Youssef Fahmi, 2014. "Les modèles de prévision de la défaillance des entreprises françaises : une approche comparative," Working Papers 2014-317, Department of Research, Ipag Business School.
- Lobna Abid & Afif Masmoudi & Sonia Zouari-Ghorbel, 2018. "The Consumer Loan’s Payment Default Predictive Model: an Application of the Logistic Regression and the Discriminant Analysis in a Tunisian Commercial Bank," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(3), pages 948-962, September.
- Mostafa, Mohamed M. & Nataraajan, Rajan, 2009. "A neuro-computational intelligence analysis of the ecological footprint of nations," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3516-3531, July.
- Maurice Peat & Stewart Jones, 2012. "Using Neural Nets To Combine Information Sets In Corporate Bankruptcy Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 90-101, April.
- Platt, Harlan D. & Platt, Marjorie B., 2006. "Understanding Differences Between Financial Distress and Bankruptcy," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 2(2), pages 1-17.
- Maurice Peat, 2001. "Bankruptcy Probability: A Theoretical and Empirical Examination," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2001, January-A.
- Jan Vavřina & David Hampel & Jitka Janová, 2013. "New approaches for the financial distress classification in agribusiness," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 61(4), pages 1177-1182.
- Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
- Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2018-03-19 (Big Data)
- NEP-CMP-2018-03-19 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1802.05326. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.