Machine learning in marketing: A literature review, conceptual framework, and research agenda
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jbusres.2022.02.049
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Artem Timoshenko & John R. Hauser, 2019. "Identifying Customer Needs from User-Generated Content," Marketing Science, INFORMS, vol. 38(1), pages 1-20, January.
- Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2017. "Customer Acquisition via Display Advertising Using Multi-Armed Bandit Experiments," Marketing Science, INFORMS, vol. 36(4), pages 500-522, July.
- Georges Casamatta & Sauveur Giannoni & Daniel Brunstein & Johan Jouve, 2022. "Host type and pricing on Airbnb: Seasonality and perceived market power," Post-Print hal-03250484, HAL.
- Chatterjee, Swagato & Goyal, Divesh & Prakash, Atul & Sharma, Jiwan, 2021. "Exploring healthcare/health-product ecommerce satisfaction: A text mining and machine learning application," Journal of Business Research, Elsevier, vol. 131(C), pages 815-825.
- Arora, Anuja & Bansal, Shivam & Kandpal, Chandrashekhar & Aswani, Reema & Dwivedi, Yogesh, 2019. "Measuring social media influencer index- insights from facebook, Twitter and Instagram," Journal of Retailing and Consumer Services, Elsevier, vol. 49(C), pages 86-101.
- Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
- Salminen, Joni & Yoganathan, Vignesh & Corporan, Juan & Jansen, Bernard J. & Jung, Soon-Gyo, 2019. "Machine learning approach to auto-tagging online content for content marketing efficiency: A comparative analysis between methods and content type," Journal of Business Research, Elsevier, vol. 101(C), pages 203-217.
- Kaiser, Carolin & Ahuvia, Aaron & Rauschnabel, Philipp A. & Wimble, Matt, 2020. "Social media monitoring: What can marketers learn from Facebook brand photos?," Journal of Business Research, Elsevier, vol. 117(C), pages 707-717.
- Martínez, Andrés & Schmuck, Claudia & Pereverzyev, Sergiy & Pirker, Clemens & Haltmeier, Markus, 2020. "A machine learning framework for customer purchase prediction in the non-contractual setting," European Journal of Operational Research, Elsevier, vol. 281(3), pages 588-596.
- An, Yongdae & An, Jinwon & Cho, Sungzoon, 2021. "Artificial intelligence-based predictions of movie audiences on opening Saturday," International Journal of Forecasting, Elsevier, vol. 37(1), pages 274-288.
- van Wezel, Michiel & Potharst, Rob, 2007. "Improved customer choice predictions using ensemble methods," European Journal of Operational Research, Elsevier, vol. 181(1), pages 436-452, August.
- Hanna, Richard & Rohm, Andrew & Crittenden, Victoria L., 2011. "We're all connected: The power of the social media ecosystem," Business Horizons, Elsevier, vol. 54(3), pages 265-273, May.
- Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
- Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
- Linda Hagen & Kosuke Uetake & Nathan Yang & Bryan Bollinger & Allison J. B. Chaney & Daria Dzyabura & Jordan Etkin & Avi Goldfarb & Liu Liu & K. Sudhir & Yanwen Wang & James R. Wright & Ying Zhu, 2020. "How can machine learning aid behavioral marketing research?," Marketing Letters, Springer, vol. 31(4), pages 361-370, December.
- Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
- Kübler, Raoul V. & Colicev, Anatoli & Pauwels, Koen H., 2020. "Social Media's Impact on the Consumer Mindset: When to Use Which Sentiment Extraction Tool?," Journal of Interactive Marketing, Elsevier, vol. 50(C), pages 136-155.
- Rietveld, Robert & van Dolen, Willemijn & Mazloom, Masoud & Worring, Marcel, 2020. "What You Feel, Is What You Like Influence of Message Appeals on Customer Engagement on Instagram," Journal of Interactive Marketing, Elsevier, vol. 49(C), pages 20-53.
- Xueping Su & Meng Gao & Jie Ren & Yunhong Li & Matthias Rätsch, 2020. "Personalized Clothing Recommendation Based on User Emotional Analysis," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-8, March.
- Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2014. "Model Selection Using Database Characteristics: Developing a Classification Tree for Longitudinal Incidence Data," Marketing Science, INFORMS, vol. 33(2), pages 188-205, March.
- Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
- Shasha Lu & Li Xiao & Min Ding, 2016. "A Video-Based Automated Recommender (VAR) System for Garments," Marketing Science, INFORMS, vol. 35(3), pages 484-510, May.
- Reema Aswani & Arpan Kumar Kar & P. Vigneswara Ilavarasan, 2018. "Detection of Spammers in Twitter marketing: A Hybrid Approach Using Social Media Analytics and Bio Inspired Computing," Information Systems Frontiers, Springer, vol. 20(3), pages 515-530, June.
- Dapeng Cui & David Curry, 2005. "Prediction in Marketing Using the Support Vector Machine," Marketing Science, INFORMS, vol. 24(4), pages 595-615, January.
- Kumar, V. & Ramachandran, Divya & Kumar, Binay, 2021. "Influence of new-age technologies on marketing: A research agenda," Journal of Business Research, Elsevier, vol. 125(C), pages 864-877.
- Jung, Sang Hoon & Jeong, Yong Jin, 2020. "Twitter data analytical methodology development for prediction of start-up firms’ social media marketing level," Technology in Society, Elsevier, vol. 63(C).
- Ming-Hui Huang & Roland T. Rust, 2021. "A strategic framework for artificial intelligence in marketing," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 30-50, January.
- Rust, Roland T., 2020. "The future of marketing," International Journal of Research in Marketing, Elsevier, vol. 37(1), pages 15-26.
- Geng Cui & Man Leung Wong & Hon-Kwong Lui, 2006. "Machine Learning for Direct Marketing Response Models: Bayesian Networks with Evolutionary Programming," Management Science, INFORMS, vol. 52(4), pages 597-612, April.
- Duncan Simester & Artem Timoshenko & Spyros I. Zoumpoulis, 2020. "Efficiently Evaluating Targeting Policies: Improving on Champion vs. Challenger Experiments," Management Science, INFORMS, vol. 66(8), pages 3412-3424, August.
- Vermeer, Susan A.M. & Araujo, Theo & Bernritter, Stefan F. & van Noort, Guda, 2019. "Seeing the wood for the trees: How machine learning can help firms in identifying relevant electronic word-of-mouth in social media," International Journal of Research in Marketing, Elsevier, vol. 36(3), pages 492-508.
- Li-Chen Cheng & Chi-Lun Huang, 2020. "Exploring contextual factors from consumer reviews affecting movie sales: an opinion mining approach," Electronic Commerce Research, Springer, vol. 20(4), pages 807-832, December.
- Srivastava, Vartika & Kalro, Arti D., 2019. "Enhancing the Helpfulness of Online Consumer Reviews: The Role of Latent (Content) Factors," Journal of Interactive Marketing, Elsevier, vol. 48(C), pages 33-50.
- Mohamad Hazim & Nor Badrul Anuar & Mohd Faizal Ab Razak & Nor Aniza Abdullah, 2018. "Detecting opinion spams through supervised boosting approach," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-23, June.
- Dokyun Lee & Kartik Hosanagar & Harikesh S. Nair, 2018. "Advertising Content and Consumer Engagement on Social Media: Evidence from Facebook," Management Science, INFORMS, vol. 64(11), pages 5105-5131, November.
- Couwenberg, Linda E. & Boksem, Maarten A.S. & Dietvorst, Roeland C. & Worm, Loek & Verbeke, Willem J.M.I. & Smidts, Ale, 2017. "Neural responses to functional and experiential ad appeals: Explaining ad effectiveness," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 355-366.
- Jai, Tun-Min (Catherine) & Fang, Dan & Bao, Forrest S. & James, Russell N. & Chen, Tianwen & Cai, Weidong, 2021. "Seeing It Is Like Touching It: Unraveling the Effective Product Presentations on Online Apparel Purchase Decisions and Brain Activity (An fMRI Study)," Journal of Interactive Marketing, Elsevier, vol. 53(C), pages 66-79.
- Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
- Theodoros Evgeniou & Massimiliano Pontil & Olivier Toubia, 2007. "A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation," Marketing Science, INFORMS, vol. 26(6), pages 805-818, 11-12.
- Chuanming Yu & Yuheng Zuo & Bolin Feng & Lu An & Baiyun Chen, 2019. "An individual-group-merchant relation model for identifying fake online reviews: an empirical study on a Chinese e-commerce platform," Information Technology and Management, Springer, vol. 20(3), pages 123-138, September.
- Shah, Denish & Murthi, B.P.S., 2021. "Marketing in a data-driven digital world: Implications for the role and scope of marketing," Journal of Business Research, Elsevier, vol. 125(C), pages 772-779.
- María Teresa Ballestar & Pilar Grau-Carles & Jorge Sainz, 2019. "Predicting customer quality in e-commerce social networks: a machine learning approach," Review of Managerial Science, Springer, vol. 13(3), pages 589-603, June.
- Mehrbakhsh Nilashi & Abbas Mardani & Huchang Liao & Hossein Ahmadi & Azizah Abdul Manaf & Wafa Almukadi, 2019. "A Hybrid Method with TOPSIS and Machine Learning Techniques for Sustainable Development of Green Hotels Considering Online Reviews," Sustainability, MDPI, vol. 11(21), pages 1-21, October.
- Hildebrand, Christian & Efthymiou, Fotis & Busquet, Francesc & Hampton, William H. & Hoffman, Donna L. & Novak, Thomas P., 2020. "Voice analytics in business research: Conceptual foundations, acoustic feature extraction, and applications," Journal of Business Research, Elsevier, vol. 121(C), pages 364-374.
- Xueming Luo & Siliang Tong & Zheng Fang & Zhe Qu, 2019. "Frontiers: Machines vs. Humans: The Impact of Artificial Intelligence Chatbot Disclosure on Customer Purchases," Marketing Science, INFORMS, vol. 38(6), pages 937-947, November.
- Bassamzadeh, Nastaran & Ghanem, Roger, 2017. "Multiscale stochastic prediction of electricity demand in smart grids using Bayesian networks," Applied Energy, Elsevier, vol. 193(C), pages 369-380.
- Yi Luo & Xiaowei Xu, 2019. "Predicting the Helpfulness of Online Restaurant Reviews Using Different Machine Learning Algorithms: A Case Study of Yelp," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
- Thomas Davenport & Abhijit Guha & Dhruv Grewal & Timna Bressgott, 2020. "How artificial intelligence will change the future of marketing," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 24-42, January.
- Ahani, Ali & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh & Sanzogni, Louis & Tarik, A. Rashid & Knox, Kathy & Samad, Sarminah & Ibrahim, Othman, 2019. "Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 331-343.
- Li, Xi & Shi, Mengze & Wang, Xin (Shane), 2019. "Video mining: Measuring visual information using automatic methods," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 216-231.
- Kexing Ding & Baruch Lev & Xuan Peng & Ting Sun & Miklos A. Vasarhelyi, 2020. "Machine learning improves accounting estimates: evidence from insurance payments," Review of Accounting Studies, Springer, vol. 25(3), pages 1098-1134, September.
- Quesenberry, Keith A. & Coolsen, Michael K., 2019. "Drama Goes Viral: Effects of Story Development on Shares and Views of Online Advertising Videos," Journal of Interactive Marketing, Elsevier, vol. 48(C), pages 1-16.
- Simmonds, Lucy & Bellman, Steven & Kennedy, Rachel & Nenycz-Thiel, Magda & Bogomolova, Svetlana, 2020. "Moderating effects of prior brand usage on visual attention to video advertising and recall: An eye-tracking investigation," Journal of Business Research, Elsevier, vol. 111(C), pages 241-248.
- Liu Liu & Daria Dzyabura & Natalie Mizik, 2020.
"Visual Listening In: Extracting Brand Image Portrayed on Social Media,"
Marketing Science, INFORMS, vol. 39(4), pages 669-686, July.
- Liu Liu & Daria Dzyabura & Natalie Mizik, 2017. "Visual Listening In: Extracting Brand Image Portrayed on Social Media," Working Papers w0258, New Economic School (NES).
- Yupeng Chen & Raghuram Iyengar & Garud Iyengar, 2017. "Modeling Multimodal Continuous Heterogeneity in Conjoint Analysis—A Sparse Learning Approach," Marketing Science, INFORMS, vol. 36(1), pages 140-156, January.
- Peng, Ling & Cui, Geng & Chung, Yuho, 2020. "Do the pieces fit? Assessing the configuration effects of promotion attributes," Journal of Business Research, Elsevier, vol. 109(C), pages 337-349.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wolfgang Breuer & Jannis Bischof & Christian Hofmann & Jochen Hundsdoerfer & Hans-Ulrich Küpper & Marko Sarstedt & Philipp Schreck & Tim Weitzel & Peter Witt, 2023. "Recent developments in Business Economics," Journal of Business Economics, Springer, vol. 93(6), pages 989-1013, August.
- Herhausen, Dennis & Bernritter, Stefan F. & Ngai, Eric W.T. & Kumar, Ajay & Delen, Dursun, 2024. "Machine learning in marketing: Recent progress and future research directions," Journal of Business Research, Elsevier, vol. 170(C).
- Nguyen, Nga & Priporas, Constantinos-Vasilios & McPherson, Mark & Manyiwa, Simon, 2023. "CSR-related consumer scepticism: A review of the literature and future research directions," Journal of Business Research, Elsevier, vol. 169(C).
- Kamaal Allil, 2024. "Integrating AI-driven marketing analytics techniques into the classroom: pedagogical strategies for enhancing student engagement and future business success," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(2), pages 142-168, June.
- Luis Alberto Holgado-Apaza & Nelly Jacqueline Ulloa-Gallardo & Ruth Nataly Aragon-Navarrete & Raidith Riva-Ruiz & Naomi Karina Odagawa-Aragon & Danger David Castellon-Apaza & Edgar E. Carpio-Vargas & , 2024. "The Exploration of Predictors for Peruvian Teachers’ Life Satisfaction through an Ensemble of Feature Selection Methods and Machine Learning," Sustainability, MDPI, vol. 16(17), pages 1-28, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Xin (Shane) & Ryoo, Jun Hyun (Joseph) & Bendle, Neil & Kopalle, Praveen K., 2021. "The role of machine learning analytics and metrics in retailing research," Journal of Retailing, Elsevier, vol. 97(4), pages 658-675.
- Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
- Herhausen, Dennis & Bernritter, Stefan F. & Ngai, Eric W.T. & Kumar, Ajay & Delen, Dursun, 2024. "Machine learning in marketing: Recent progress and future research directions," Journal of Business Research, Elsevier, vol. 170(C).
- Volkmar, Gioia & Fischer, Peter M. & Reinecke, Sven, 2022. "Artificial Intelligence and Machine Learning: Exploring drivers, barriers, and future developments in marketing management," Journal of Business Research, Elsevier, vol. 149(C), pages 599-614.
- Erik Hermann, 2022. "Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective," Journal of Business Ethics, Springer, vol. 179(1), pages 43-61, August.
- Vinay Singh & Brijesh Nanavati & Arpan Kumar Kar & Agam Gupta, 2023. "How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach," Information Systems Frontiers, Springer, vol. 25(4), pages 1621-1638, August.
- Mustak, Mekhail & Salminen, Joni & Plé, Loïc & Wirtz, Jochen, 2021. "Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda," Journal of Business Research, Elsevier, vol. 124(C), pages 389-404.
- Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
- Ming-Hui Huang & Roland T. Rust, 2021. "A strategic framework for artificial intelligence in marketing," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 30-50, January.
- Chatterjee, Sheshadri & Chaudhuri, Ranjan & Vrontis, Demetris, 2022. "AI and digitalization in relationship management: Impact of adopting AI-embedded CRM system," Journal of Business Research, Elsevier, vol. 150(C), pages 437-450.
- Huang, Ming-Hui & Rust, Roland T., 2022. "A Framework for Collaborative Artificial Intelligence in Marketing," Journal of Retailing, Elsevier, vol. 98(2), pages 209-223.
- Xin (Shane) Wang & Neil Bendle & Yinjie Pan, 2024. "Beyond text: Marketing strategy in a world turned upside down," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 939-954, July.
- Venkatesh Shankar & Sohil Parsana, 2022. "An overview and empirical comparison of natural language processing (NLP) models and an introduction to and empirical application of autoencoder models in marketing," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1324-1350, November.
- Akter, Shahriar & Dwivedi, Yogesh K. & Sajib, Shahriar & Biswas, Kumar & Bandara, Ruwan J. & Michael, Katina, 2022. "Algorithmic bias in machine learning-based marketing models," Journal of Business Research, Elsevier, vol. 144(C), pages 201-216.
- Hsing Kenneth Cheng & D. Daniel Sokol & Xinyu Zang, 2024. "The rise of empirical online platform research in the new millennium," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 416-451, March.
- Schwenzow, Jasper & Hartmann, Jochen & Schikowsky, Amos & Heitmann, Mark, 2021. "Understanding videos at scale: How to extract insights for business research," Journal of Business Research, Elsevier, vol. 123(C), pages 367-379.
- Blasco-Arcas, Lorena & Lee, Hsin-Hsuan Meg & Kastanakis, Minas N. & Alcañiz, Mariano & Reyes-Menendez, Ana, 2022. "The role of consumer data in marketing: A research agenda," Journal of Business Research, Elsevier, vol. 146(C), pages 436-452.
- Grewal, Dhruv & Herhausen, Dennis & Ludwig, Stephan & Villarroel Ordenes, Francisco, 2022. "The Future of Digital Communication Research: Considering Dynamics and Multimodality," Journal of Retailing, Elsevier, vol. 98(2), pages 224-240.
- Lutz, Bernhard & Pröllochs, Nicolas & Neumann, Dirk, 2022. "Are longer reviews always more helpful? Disentangling the interplay between review length and line of argumentation," Journal of Business Research, Elsevier, vol. 144(C), pages 888-901.
- van Giffen, Benjamin & Herhausen, Dennis & Fahse, Tobias, 2022. "Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods," Journal of Business Research, Elsevier, vol. 144(C), pages 93-106.
More about this item
Keywords
Machine learning; Marketing; Literature review; Conceptual framework; Research agenda;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:145:y:2022:i:c:p:35-48. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.