IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v80y2021i2d10.1007_s10898-020-00972-2.html
   My bibliography  Save this article

Solving unconstrained 0-1 polynomial programs through quadratic convex reformulation

Author

Listed:
  • Sourour Elloumi

    (UMA-ENSTA
    CEDRIC-Cnam)

  • Amélie Lambert

    (CEDRIC-Cnam)

  • Arnaud Lazare

    (UMA-ENSTA
    CEDRIC-Cnam)

Abstract

We propose a method called Polynomial Quadratic Convex Reformulation (PQCR) to solve exactly unconstrained binary polynomial problems (UBP) through quadratic convex reformulation. First, we quadratize the problem by adding new binary variables and reformulating (UBP) into a non-convex quadratic program with linear constraints (MIQP). We then consider the solution of (MIQP) with a specially-tailored quadratic convex reformulation method. In particular, this method relies, in a pre-processing step, on the resolution of a semi-definite programming problem where the link between initial and additional variables is used. We present computational results where we compare PQCR with the solvers Baron and Scip. We evaluate PQCR on instances of the image restoration problem and the low auto-correlation binary sequence problem from MINLPLib. For this last problem, 33 instances were unsolved in MINLPLib. We solve to optimality 10 of them, and for the 23 others we significantly improve the dual bounds. We also improve the best known solutions of many instances.

Suggested Citation

  • Sourour Elloumi & Amélie Lambert & Arnaud Lazare, 2021. "Solving unconstrained 0-1 polynomial programs through quadratic convex reformulation," Journal of Global Optimization, Springer, vol. 80(2), pages 231-248, June.
  • Handle: RePEc:spr:jglopt:v:80:y:2021:i:2:d:10.1007_s10898-020-00972-2
    DOI: 10.1007/s10898-020-00972-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00972-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00972-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean Lasserre & Tung Thanh, 2013. "Convex underestimators of polynomials," Journal of Global Optimization, Springer, vol. 56(1), pages 1-25, May.
    2. Alain Billionnet & Sourour Elloumi & Amélie Lambert & Angelika Wiegele, 2017. "Using a Conic Bundle Method to Accelerate Both Phases of a Quadratic Convex Reformulation," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 318-331, May.
    3. J. M. W. Rhys, 1970. "A Selection Problem of Shared Fixed Costs and Network Flows," Management Science, INFORMS, vol. 17(3), pages 200-207, November.
    4. D. J. Laughhunn, 1970. "Quadratic Binary Programming with Application to Capital-Budgeting Problems," Operations Research, INFORMS, vol. 18(3), pages 454-461, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    2. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    3. Arbib, Claudio & Servilio, Mara & Archetti, Claudia & Speranza, M. Grazia, 2014. "The directed profitable location Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 811-819.
    4. Hezhi Luo & Xiaodi Bai & Jiming Peng, 2019. "Enhancing Semidefinite Relaxation for Quadratically Constrained Quadratic Programming via Penalty Methods," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 964-992, March.
    5. Chunli Liu & Jianjun Gao, 2015. "A polynomial case of convex integer quadratic programming problems with box integer constraints," Journal of Global Optimization, Springer, vol. 62(4), pages 661-674, August.
    6. Jesus Cunha & Luidi Simonetti & Abilio Lucena, 2016. "Lagrangian heuristics for the Quadratic Knapsack Problem," Computational Optimization and Applications, Springer, vol. 63(1), pages 97-120, January.
    7. Syam, Siddhartha S., 1998. "A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals," European Journal of Operational Research, Elsevier, vol. 108(1), pages 196-207, July.
    8. W. David Pisinger & Anders Bo Rasmussen & Rune Sandvik, 2007. "Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 280-290, May.
    9. Gabriel Lopez Zenarosa & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2021. "On exact solution approaches for bilevel quadratic 0–1 knapsack problem," Annals of Operations Research, Springer, vol. 298(1), pages 555-572, March.
    10. Billionnet, Alain & Calmels, Frederic, 1996. "Linear programming for the 0-1 quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 92(2), pages 310-325, July.
    11. Dimitrios Nerantzis & Claire S. Adjiman, 2019. "Tighter $$\alpha $$ α BB relaxations through a refinement scheme for the scaled Gerschgorin theorem," Journal of Global Optimization, Springer, vol. 73(3), pages 467-483, March.
    12. José R. Correa & Andreas S. Schulz, 2005. "Single-Machine Scheduling with Precedence Constraints," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1005-1021, November.
    13. Christoph Buchheim & Claudia D’Ambrosio, 2017. "Monomial-wise optimal separable underestimators for mixed-integer polynomial optimization," Journal of Global Optimization, Springer, vol. 67(4), pages 759-786, April.
    14. Britta Schulze & Michael Stiglmayr & Luís Paquete & Carlos M. Fonseca & David Willems & Stefan Ruzika, 2020. "On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 107-132, August.
    15. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    16. Hohmann, Marc & Warrington, Joseph & Lygeros, John, 2020. "A moment and sum-of-squares extension of dual dynamic programming with application to nonlinear energy storage problems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 16-32.
    17. Dorit S. Hochbaum, 2004. "50th Anniversary Article: Selection, Provisioning, Shared Fixed Costs, Maximum Closure, and Implications on Algorithmic Methods Today," Management Science, INFORMS, vol. 50(6), pages 709-723, June.
    18. Queyranne, M. & Wolsey, L.A., 2015. "Modeling poset convex subsets," LIDAM Discussion Papers CORE 2015049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Z. Y. Wu & Y. J. Yang & F. S. Bai & M. Mammadov, 2011. "Global Optimality Conditions and Optimization Methods for Quadratic Knapsack Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 241-259, November.
    20. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:80:y:2021:i:2:d:10.1007_s10898-020-00972-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.