IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v17y1970i3p200-207.html
   My bibliography  Save this article

A Selection Problem of Shared Fixed Costs and Network Flows

Author

Listed:
  • J. M. W. Rhys

    (Barclays Bank Limited, London, England)

Abstract

An apparently combinatorial problem is defined, and a method given for solution by reduction to a network flow problem. The basic problem defined is that of assessing the desirability of incurring a number of fixed costs, when the benefits to be obtained cannot be related to individual cost-incurring items (facilities) but only to combinations.

Suggested Citation

  • J. M. W. Rhys, 1970. "A Selection Problem of Shared Fixed Costs and Network Flows," Management Science, INFORMS, vol. 17(3), pages 200-207, November.
  • Handle: RePEc:inm:ormnsc:v:17:y:1970:i:3:p:200-207
    DOI: 10.1287/mnsc.17.3.200
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.17.3.200
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.17.3.200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. W. David Pisinger & Anders Bo Rasmussen & Rune Sandvik, 2007. "Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 280-290, May.
    2. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    3. Chunli Liu & Jianjun Gao, 2015. "A polynomial case of convex integer quadratic programming problems with box integer constraints," Journal of Global Optimization, Springer, vol. 62(4), pages 661-674, August.
    4. Gabriel Lopez Zenarosa & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2021. "On exact solution approaches for bilevel quadratic 0–1 knapsack problem," Annals of Operations Research, Springer, vol. 298(1), pages 555-572, March.
    5. Jesus Cunha & Luidi Simonetti & Abilio Lucena, 2016. "Lagrangian heuristics for the Quadratic Knapsack Problem," Computational Optimization and Applications, Springer, vol. 63(1), pages 97-120, January.
    6. Warren P. Adams & Julie Bowers Lassiter & Hanif D. Sherali, 1998. "Persistency in 0-1 Polynomial Programming," Mathematics of Operations Research, INFORMS, vol. 23(2), pages 359-389, May.
    7. José R. Correa & Andreas S. Schulz, 2005. "Single-Machine Scheduling with Precedence Constraints," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1005-1021, November.
    8. Olszewski, Wojciech & Vohra, Rakesh, 2014. "Selecting a discrete portfolio," Journal of Mathematical Economics, Elsevier, vol. 55(C), pages 69-73.
    9. Dorit S. Hochbaum, 2004. "50th Anniversary Article: Selection, Provisioning, Shared Fixed Costs, Maximum Closure, and Implications on Algorithmic Methods Today," Management Science, INFORMS, vol. 50(6), pages 709-723, June.
    10. Alberto Caprara & David Pisinger & Paolo Toth, 1999. "Exact Solution of the Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 125-137, May.
    11. Dorit S. Hochbaum & Anna Chen, 2000. "Performance Analysis and Best Implementations of Old and New Algorithms for the Open-Pit Mining Problem," Operations Research, INFORMS, vol. 48(6), pages 894-914, December.
    12. Arbib, Claudio & Servilio, Mara & Archetti, Claudia & Speranza, M. Grazia, 2014. "The directed profitable location Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 811-819.
    13. Britta Schulze & Michael Stiglmayr & Luís Paquete & Carlos M. Fonseca & David Willems & Stefan Ruzika, 2020. "On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 107-132, August.
    14. Sourour Elloumi & Amélie Lambert & Arnaud Lazare, 2021. "Solving unconstrained 0-1 polynomial programs through quadratic convex reformulation," Journal of Global Optimization, Springer, vol. 80(2), pages 231-248, June.
    15. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    16. Queyranne, M. & Wolsey, L.A., 2015. "Modeling poset convex subsets," LIDAM Discussion Papers CORE 2015049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Ali Koç & David P. Morton, 2015. "Prioritization via Stochastic Optimization," Management Science, INFORMS, vol. 61(3), pages 586-603, March.
    18. Z. Y. Wu & Y. J. Yang & F. S. Bai & M. Mammadov, 2011. "Global Optimality Conditions and Optimization Methods for Quadratic Knapsack Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 241-259, November.
    19. Renato de Matta & Vernon Ning Hsu & Timothy J. Lowe, 1999. "Capacitated selection problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(1), pages 19-37, February.
    20. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    21. Julie Ward & Bin Zhang & Shailendra Jain & Chris Fry & Thomas Olavson & Holger Mishal & Jason Amaral & Dirk Beyer & Ann Brecht & Brian Cargille & Russ Chadinha & Kathy Chou & Gavin DeNyse & Qi Feng & , 2010. "HP Transforms Product Portfolio Management with Operations Research," Interfaces, INFORMS, vol. 40(1), pages 17-32, February.
    22. Hezhi Luo & Xiaodi Bai & Jiming Peng, 2019. "Enhancing Semidefinite Relaxation for Quadratically Constrained Quadratic Programming via Penalty Methods," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 964-992, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:17:y:1970:i:3:p:200-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.