IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v73y2019i3d10.1007_s10898-018-0718-y.html
   My bibliography  Save this article

Tighter $$\alpha $$ α BB relaxations through a refinement scheme for the scaled Gerschgorin theorem

Author

Listed:
  • Dimitrios Nerantzis

    (Imperial College London)

  • Claire S. Adjiman

    (Imperial College London)

Abstract

Of central importance to the $$\alpha $$ α BB algorithm is the calculation of the $$\alpha $$ α values that guarantee the convexity of the underestimator. Improvement (reduction) of these values can result in tighter underestimators and thus increase the performance of the algorithm. For instance, it was shown by Wechsung et al. (J Glob Optim 58(3):429–438, 2014) that the emergence of the cluster effect can depend on the magnitude of the $$\alpha $$ α values. Motivated by this, we present a refinement method that can improve (reduce) the magnitude of $$\alpha $$ α values given by the scaled Gerschgorin method and thus create tighter convex underestimators for the $$\alpha $$ α BB algorithm. We apply the new method and compare it with the scaled Gerschgorin on randomly generated interval symmetric matrices as well as interval Hessians taken from test functions. As a measure of comparison, we use the maximal separation distance between the original function and the underestimator. Based on the results obtained, we conclude that the proposed refinement method can significantly reduce the maximal separation distance when compared to the scaled Gerschgorin method. This approach therefore has the potential to improve the performance of the $$\alpha $$ α BB algorithm.

Suggested Citation

  • Dimitrios Nerantzis & Claire S. Adjiman, 2019. "Tighter $$\alpha $$ α BB relaxations through a refinement scheme for the scaled Gerschgorin theorem," Journal of Global Optimization, Springer, vol. 73(3), pages 467-483, March.
  • Handle: RePEc:spr:jglopt:v:73:y:2019:i:3:d:10.1007_s10898-018-0718-y
    DOI: 10.1007/s10898-018-0718-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0718-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0718-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean Lasserre & Tung Thanh, 2013. "Convex underestimators of polynomials," Journal of Global Optimization, Springer, vol. 56(1), pages 1-25, May.
    2. Anders Skjäl & Tapio Westerlund, 2014. "New methods for calculating $$\alpha $$ BB-type underestimators," Journal of Global Optimization, Springer, vol. 58(3), pages 411-427, March.
    3. A. Skjäl & T. Westerlund & R. Misener & C. A. Floudas, 2012. "A Generalization of the Classical αBB Convex Underestimation via Diagonal and Nondiagonal Quadratic Terms," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 462-490, August.
    4. Achim Wechsung & Spencer Schaber & Paul Barton, 2014. "The cluster problem revisited," Journal of Global Optimization, Springer, vol. 58(3), pages 429-438, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Kazazakis & C. S. Adjiman, 2018. "Arbitrarily tight $$\alpha $$ α BB underestimators of general non-linear functions over sub-optimal domains," Journal of Global Optimization, Springer, vol. 71(4), pages 815-844, August.
    2. Gabriele Eichfelder & Tobias Gerlach & Susanne Sumi, 2016. "A modification of the $$\alpha \hbox {BB}$$ α BB method for box-constrained optimization and an application to inverse kinematics," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 93-121, February.
    3. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    4. M. M. Faruque Hasan, 2018. "An edge-concave underestimator for the global optimization of twice-differentiable nonconvex problems," Journal of Global Optimization, Springer, vol. 71(4), pages 735-752, August.
    5. Jai Rajyaguru & Mario E. Villanueva & Boris Houska & Benoît Chachuat, 2017. "Chebyshev model arithmetic for factorable functions," Journal of Global Optimization, Springer, vol. 68(2), pages 413-438, June.
    6. Hohmann, Marc & Warrington, Joseph & Lygeros, John, 2020. "A moment and sum-of-squares extension of dual dynamic programming with application to nonlinear energy storage problems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 16-32.
    7. Matthew E. Wilhelm & Chenyu Wang & Matthew D. Stuber, 2023. "Convex and concave envelopes of artificial neural network activation functions for deterministic global optimization," Journal of Global Optimization, Springer, vol. 85(3), pages 569-594, March.
    8. Stuart M. Harwood & Paul I. Barton, 2017. "How to solve a design centering problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 215-254, August.
    9. Jaromił Najman & Alexander Mitsos, 2019. "On tightness and anchoring of McCormick and other relaxations," Journal of Global Optimization, Springer, vol. 74(4), pages 677-703, August.
    10. Sourour Elloumi & Amélie Lambert & Arnaud Lazare, 2021. "Solving unconstrained 0-1 polynomial programs through quadratic convex reformulation," Journal of Global Optimization, Springer, vol. 80(2), pages 231-248, June.
    11. Milan Hladík, 2018. "Testing pseudoconvexity via interval computation," Journal of Global Optimization, Springer, vol. 71(3), pages 443-455, July.
    12. Rohit Kannan & Paul I. Barton, 2018. "Convergence-order analysis of branch-and-bound algorithms for constrained problems," Journal of Global Optimization, Springer, vol. 71(4), pages 753-813, August.
    13. Christoph Buchheim & Claudia D’Ambrosio, 2017. "Monomial-wise optimal separable underestimators for mixed-integer polynomial optimization," Journal of Global Optimization, Springer, vol. 67(4), pages 759-786, April.
    14. Anders Skjäl & Tapio Westerlund, 2014. "New methods for calculating $$\alpha $$ BB-type underestimators," Journal of Global Optimization, Springer, vol. 58(3), pages 411-427, March.
    15. Milan Hladík & Lubomir V. Kolev & Iwona Skalna, 2021. "Linear interval parametric approach to testing pseudoconvexity," Journal of Global Optimization, Springer, vol. 79(2), pages 351-368, February.
    16. Rohit Kannan & Paul I. Barton, 2017. "The cluster problem in constrained global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 629-676, November.
    17. Miten Mistry & Dimitrios Letsios & Gerhard Krennrich & Robert M. Lee & Ruth Misener, 2021. "Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1103-1119, July.
    18. Dimitrios Nerantzis & Claire S. Adjiman, 2017. "Enclosure of all index-1 saddle points of general nonlinear functions," Journal of Global Optimization, Springer, vol. 67(3), pages 451-474, March.
    19. Spencer D. Schaber & Joseph K. Scott & Paul I. Barton, 2019. "Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs," Journal of Global Optimization, Springer, vol. 73(1), pages 113-151, January.
    20. Jaromił Najman & Alexander Mitsos, 2016. "Convergence analysis of multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 66(4), pages 597-628, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:73:y:2019:i:3:d:10.1007_s10898-018-0718-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.