Quadratic Binary Programming with Application to Capital-Budgeting Problems
Author
Abstract
Suggested Citation
DOI: 10.1287/opre.18.3.454
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Billionnet, Alain & Faye, Alain & Soutif, Eric, 1999. "A new upper bound for the 0-1 quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 112(3), pages 664-672, February.
- Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
- Shenshen Gu & Xinyi Chen, 2020. "The Basic Algorithm for the Constrained Zero-One Quadratic Programming Problem with k -diagonal Matrix and Its Application in the Power System," Mathematics, MDPI, vol. 8(1), pages 1-16, January.
- Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
- C. Helmberg & F. Rendl & R. Weismantel, 2000. "A Semidefinite Programming Approach to the Quadratic Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 4(2), pages 197-215, June.
- Sourour Elloumi & Amélie Lambert & Arnaud Lazare, 2021. "Solving unconstrained 0-1 polynomial programs through quadratic convex reformulation," Journal of Global Optimization, Springer, vol. 80(2), pages 231-248, June.
- Syam, Siddhartha S., 1998. "A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals," European Journal of Operational Research, Elsevier, vol. 108(1), pages 196-207, July.
- Richard J. Forrester & Warren P. Adams & Paul T. Hadavas, 2010. "Concise RLT forms of binary programs: A computational study of the quadratic knapsack problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(1), pages 1-12, February.
- Billionnet, Alain & Calmels, Frederic, 1996. "Linear programming for the 0-1 quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 92(2), pages 310-325, July.
- Xiaojin Zheng & Xiaoling Sun & Duan Li & Yong Xia, 2010. "Duality Gap Estimation of Linear Equality Constrained Binary Quadratic Programming," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 864-880, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:18:y:1970:i:3:p:454-461. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.