IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v75y2019i4d10.1007_s10898-019-00825-7.html
   My bibliography  Save this article

Noisy Euclidean distance matrix completion with a single missing node

Author

Listed:
  • Stefan Sremac

    (University of Waterloo)

  • Fei Wang

    (Royal Institute of Technology)

  • Henry Wolkowicz

    (University of Waterloo)

  • Lucas Pettersson

    (Royal Institute of Technology)

Abstract

We present several solution techniques for the noisy single source localization problem, i.e. the Euclidean distance matrix completion problem with a single missing node to locate under noisy data. For the case that the sensor locations are fixed, we show that this problem is implicitly convex, and we provide a purification algorithm along with the SDP relaxation to solve it efficiently and accurately. For the case that the sensor locations are relaxed, we study a model based on facial reduction. We present several approaches to solve this problem efficiently, and we compare their performance with existing techniques in the literature. Our tools are semidefinite programming, Euclidean distance matrices, facial reduction, and the generalized trust region subproblem. We include extensive numerical tests.

Suggested Citation

  • Stefan Sremac & Fei Wang & Henry Wolkowicz & Lucas Pettersson, 2019. "Noisy Euclidean distance matrix completion with a single missing node," Journal of Global Optimization, Springer, vol. 75(4), pages 973-1002, December.
  • Handle: RePEc:spr:jglopt:v:75:y:2019:i:4:d:10.1007_s10898-019-00825-7
    DOI: 10.1007/s10898-019-00825-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00825-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00825-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ting Pong & Henry Wolkowicz, 2014. "The generalized trust region subproblem," Computational Optimization and Applications, Springer, vol. 58(2), pages 273-322, June.
    2. Le An & Pham Tao, 2005. "The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems," Annals of Operations Research, Springer, vol. 133(1), pages 23-46, January.
    3. Gábor Pataki, 1998. "On the Rank of Extreme Matrices in Semidefinite Programs and the Multiplicity of Optimal Eigenvalues," Mathematics of Operations Research, INFORMS, vol. 23(2), pages 339-358, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro D’Alessandro & Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2024. "The Descent–Ascent Algorithm for DC Programming," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 657-671, March.
    2. Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
    3. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    4. Tao Pham Dinh & Yi-Shuai Niu, 2011. "An efficient DC programming approach for portfolio decision with higher moments," Computational Optimization and Applications, Springer, vol. 50(3), pages 525-554, December.
    5. Yong Xia & Longfei Wang & Meijia Yang, 2019. "A fast algorithm for globally solving Tikhonov regularized total least squares problem," Journal of Global Optimization, Springer, vol. 73(2), pages 311-330, February.
    6. Joaquim Júdice, 2012. "Algorithms for linear programming with linear complementarity constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 4-25, April.
    7. Hoai An Le Thi & Van Ngai Huynh & Tao Pham Dinh, 2018. "Convergence Analysis of Difference-of-Convex Algorithm with Subanalytic Data," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 103-126, October.
    8. João Carlos O. Souza & Paulo Roberto Oliveira & Antoine Soubeyran, 2016. "Global convergence of a proximal linearized algorithm for difference of convex functions," Post-Print hal-01440298, HAL.
    9. A. B. Dieker & S. Ghosh & M. S. Squillante, 2017. "Optimal Resource Capacity Management for Stochastic Networks," Operations Research, INFORMS, vol. 65(1), pages 221-241, February.
    10. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    11. Laura Girometti & Martin Huska & Alessandro Lanza & Serena Morigi, 2024. "Convex Predictor–Nonconvex Corrector Optimization Strategy with Application to Signal Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1286-1325, September.
    12. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2022. "Essentials of numerical nonsmooth optimization," Annals of Operations Research, Springer, vol. 314(1), pages 213-253, July.
    13. Hoai Le Thi & Van Huynh & Tao Dinh & A. Vaz & L. Vicente, 2014. "Globally convergent DC trust-region methods," Journal of Global Optimization, Springer, vol. 59(2), pages 209-225, July.
    14. F. Mashkoorzadeh & N. Movahedian & S. Nobakhtian, 2022. "The DTC (difference of tangentially convex functions) programming: optimality conditions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 270-295, July.
    15. Gruzdeva, Tatiana V. & Strekalovsky, Alexander S., 2018. "On solving the sum-of-ratios problem," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 260-269.
    16. Luigi Grippo & Laura Palagi & Mauro Piacentini & Veronica Piccialli, 2009. "An unconstrained approach for solving low rank SDP relaxations of {-1,1} quadratic problems," DIS Technical Reports 2009-13, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    17. Crystal T. Nguyen & Daniel J. Luckett & Anna R. Kahkoska & Grace E. Shearrer & Donna Spruijt‐Metz & Jaimie N. Davis & Michael R. Kosorok, 2020. "Estimating individualized treatment regimes from crossover designs," Biometrics, The International Biometric Society, vol. 76(3), pages 778-788, September.
    18. Hoai An, Le Thi & Minh, Le Hoai & Tao, Pham Dinh, 2007. "Optimization based DC programming and DCA for hierarchical clustering," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1067-1085, December.
    19. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    20. Jos F. Sturm & Shuzhong Zhang, 2003. "On Cones of Nonnegative Quadratic Functions," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 246-267, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:75:y:2019:i:4:d:10.1007_s10898-019-00825-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.