IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v56y2013i3p939-956.html
   My bibliography  Save this article

Large-scale standard pooling problems with constrained pools and fixed demands

Author

Listed:
  • Manuel Ruiz
  • Olivier Briant
  • Jean-Maurice Clochard
  • Bernard Penz

Abstract

We present a new variant of the standard pooling problem in which demands are fixed and there are specific constraints on the intermediate pool. We propose a new formulation composed of proportion-flow variables, and we design an exact branch and bound algorithm by combining existing algorithms. Difficult instances have been generated to demonstrate the efficiency of our method, and our results are compared with those of Couenne, a generic MINLP solver. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • Manuel Ruiz & Olivier Briant & Jean-Maurice Clochard & Bernard Penz, 2013. "Large-scale standard pooling problems with constrained pools and fixed demands," Journal of Global Optimization, Springer, vol. 56(3), pages 939-956, July.
  • Handle: RePEc:spr:jglopt:v:56:y:2013:i:3:p:939-956
    DOI: 10.1007/s10898-012-9869-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9869-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9869-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faiz A. Al-Khayyal & James E. Falk, 1983. "Jointly Constrained Biconvex Programming," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 273-286, May.
    2. Le An & Pham Tao, 2005. "The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems," Annals of Operations Research, Springer, vol. 133(1), pages 23-46, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akshay Gupte & Shabbir Ahmed & Santanu S. Dey & Myun Seok Cheon, 2017. "Relaxations and discretizations for the pooling problem," Journal of Global Optimization, Springer, vol. 67(3), pages 631-669, March.
    2. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro D’Alessandro & Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2024. "The Descent–Ascent Algorithm for DC Programming," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 657-671, March.
    2. Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
    3. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    4. Kristianto, Yohanes & Helo, Petri, 2015. "Reprint of “Product architecture modularity implications for operations economy of green supply chains”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 74(C), pages 63-80.
    5. Tao Pham Dinh & Yi-Shuai Niu, 2011. "An efficient DC programming approach for portfolio decision with higher moments," Computational Optimization and Applications, Springer, vol. 50(3), pages 525-554, December.
    6. Joaquim Júdice, 2012. "Algorithms for linear programming with linear complementarity constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 4-25, April.
    7. Hoai An Le Thi & Van Ngai Huynh & Tao Pham Dinh, 2018. "Convergence Analysis of Difference-of-Convex Algorithm with Subanalytic Data," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 103-126, October.
    8. João Carlos O. Souza & Paulo Roberto Oliveira & Antoine Soubeyran, 2016. "Global convergence of a proximal linearized algorithm for difference of convex functions," Post-Print hal-01440298, HAL.
    9. A. B. Dieker & S. Ghosh & M. S. Squillante, 2017. "Optimal Resource Capacity Management for Stochastic Networks," Operations Research, INFORMS, vol. 65(1), pages 221-241, February.
    10. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    11. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    12. Laura Girometti & Martin Huska & Alessandro Lanza & Serena Morigi, 2024. "Convex Predictor–Nonconvex Corrector Optimization Strategy with Application to Signal Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1286-1325, September.
    13. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2022. "Essentials of numerical nonsmooth optimization," Annals of Operations Research, Springer, vol. 314(1), pages 213-253, July.
    14. Marco Locatelli, 2014. "A technique to derive the analytical form of convex envelopes for some bivariate functions," Journal of Global Optimization, Springer, vol. 59(2), pages 477-501, July.
    15. Hoai Le Thi & Van Huynh & Tao Dinh & A. Vaz & L. Vicente, 2014. "Globally convergent DC trust-region methods," Journal of Global Optimization, Springer, vol. 59(2), pages 209-225, July.
    16. F. Mashkoorzadeh & N. Movahedian & S. Nobakhtian, 2022. "The DTC (difference of tangentially convex functions) programming: optimality conditions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 270-295, July.
    17. Gruzdeva, Tatiana V. & Strekalovsky, Alexander S., 2018. "On solving the sum-of-ratios problem," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 260-269.
    18. Crystal T. Nguyen & Daniel J. Luckett & Anna R. Kahkoska & Grace E. Shearrer & Donna Spruijt‐Metz & Jaimie N. Davis & Michael R. Kosorok, 2020. "Estimating individualized treatment regimes from crossover designs," Biometrics, The International Biometric Society, vol. 76(3), pages 778-788, September.
    19. Harold P. Benson, 2004. "Concave envelopes of monomial functions over rectangles," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 467-476, June.
    20. Hoai An, Le Thi & Minh, Le Hoai & Tao, Pham Dinh, 2007. "Optimization based DC programming and DCA for hierarchical clustering," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1067-1085, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:56:y:2013:i:3:p:939-956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.