Conjugate Duality in Convex Optimization
Author
Abstract
Individual chapters are listed in the "Chapters" tab
Suggested Citation
DOI: 10.1007/978-3-642-04900-2
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- N. Dinh & G. Vallet & M. Volle, 2014. "Functional inequalities and theorems of the alternative involving composite functions," Journal of Global Optimization, Springer, vol. 59(4), pages 837-863, August.
- Hocine Mokhtar-Kharroubi, 2017. "Convex and convex-like optimization over a range inclusion problem and first applications," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 277-299, November.
- N. Dinh & V. Jeyakumar, 2014. "Farkas’ lemma: three decades of generalizations for mathematical optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 1-22, April.
- William B. Haskell & Alejandro Toriello, 2018. "Modeling Stochastic Dominance as Infinite-Dimensional Constraint Systems via the Strassen Theorem," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 726-742, September.
- Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
- Fabián Flores-Bazán & Filip Thiele, 2022. "On the Lower Semicontinuity of the Value Function and Existence of Solutions in Quasiconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 390-417, November.
- Xiangkai Sun & Hongyong Fu & Jing Zeng, 2018. "Robust Approximate Optimality Conditions for Uncertain Nonsmooth Optimization with Infinite Number of Constraints," Mathematics, MDPI, vol. 7(1), pages 1-14, December.
- Xiangkai Sun & Wen Tan & Kok Lay Teo, 2023. "Characterizing a Class of Robust Vector Polynomial Optimization via Sum of Squares Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 737-764, May.
- N. Dinh & M. A. Goberna & M. A. López & T. H. Mo, 2017. "Farkas-Type Results for Vector-Valued Functions with Applications," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 357-390, May.
Book Chapters
The following chapters of this book are listed in IDEAS- Radu Ioan Boţ, 2010. "Introduction," Lecture Notes in Economics and Mathematical Systems, in: Conjugate Duality in Convex Optimization, pages 1-8, Springer.
- Radu Ioan Boţ, 2010. "Perturbation Functions and Dual Problems," Lecture Notes in Economics and Mathematical Systems, in: Conjugate Duality in Convex Optimization, chapter 0, pages 9-33, Springer.
- Radu Ioan Boţ, 2010. "Moreau–Rockafellar Formulae and Closedness-Type Regularity Conditions," Lecture Notes in Economics and Mathematical Systems, in: Conjugate Duality in Convex Optimization, chapter 0, pages 35-64, Springer.
- Radu Ioan Boţ, 2010. "Biconjugate Functions," Lecture Notes in Economics and Mathematical Systems, in: Conjugate Duality in Convex Optimization, chapter 0, pages 65-86, Springer.
- Radu Ioan Boţ, 2010. "Strong and Total Conjugate Duality," Lecture Notes in Economics and Mathematical Systems, in: Conjugate Duality in Convex Optimization, chapter 0, pages 87-103, Springer.
- Radu Ioan Boţ, 2010. "Unconventional Fenchel Duality," Lecture Notes in Economics and Mathematical Systems, in: Conjugate Duality in Convex Optimization, chapter 0, pages 105-131, Springer.
- Radu Ioan Boţ, 2010. "Applications of the Duality to Monotone Operators," Lecture Notes in Economics and Mathematical Systems, in: Conjugate Duality in Convex Optimization, chapter 0, pages 133-155, Springer.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnecms:978-3-642-04900-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.