IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v57y2013i2p385-398.html
   My bibliography  Save this article

Global search perspectives for multiobjective optimization

Author

Listed:
  • Alberto Lovison

Abstract

Extending the notion of global search to multiobjective optimization is far than straightforward, mainly for the reason that one almost always has to deal with infinite Pareto optima and correspondingly infinite optimal values. Adopting Stephen Smale’s global analysis framework, we highlight the geometrical features of the set of Pareto optima and we are led to consistent notions of global convergence. We formulate then a multiobjective version of a celebrated result by Stephens and Baritompa, about the necessity of generating everywhere dense sample sequences, and describe a globally convergent algorithm in case the Lipschitz constant of the determinant of the Jacobian is known. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • Alberto Lovison, 2013. "Global search perspectives for multiobjective optimization," Journal of Global Optimization, Springer, vol. 57(2), pages 385-398, October.
  • Handle: RePEc:spr:jglopt:v:57:y:2013:i:2:p:385-398
    DOI: 10.1007/s10898-012-9943-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9943-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9943-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Miglierina & E. Molho & M. Rocca, 2008. "Critical Points Index for Vector Functions and Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 138(3), pages 479-496, September.
    2. C. Hillermeier, 2001. "Generalized Homotopy Approach to Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 557-583, September.
    3. C. P. Stephens & W. Baritompa, 1998. "Global Optimization Requires Global Information," Journal of Optimization Theory and Applications, Springer, vol. 96(3), pages 575-588, March.
    4. Wan, Yieh-Hei, 1975. "On local Pareto optima," Journal of Mathematical Economics, Elsevier, vol. 2(1), pages 35-42, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Martin & Alexandre Goldsztejn & Laurent Granvilliers & Christophe Jermann, 2016. "On continuation methods for non-linear bi-objective optimization: towards a certified interval-based approach," Journal of Global Optimization, Springer, vol. 64(1), pages 3-16, January.
    2. Markus Hartikainen & Alberto Lovison, 2015. "PAINT–SiCon: constructing consistent parametric representations of Pareto sets in nonconvex multiobjective optimization," Journal of Global Optimization, Springer, vol. 62(2), pages 243-261, June.
    3. Alberto Lovison & Kaisa Miettinen, 2021. "On the Extension of the DIRECT Algorithm to Multiple Objectives," Journal of Global Optimization, Springer, vol. 79(2), pages 387-412, February.
    4. Kalyan Shankar Bhattacharjee & Hemant Kumar Singh & Tapabrata Ray, 2017. "An approach to generate comprehensive piecewise linear interpolation of pareto outcomes to aid decision making," Journal of Global Optimization, Springer, vol. 68(1), pages 71-93, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    2. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    3. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    4. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    5. A. Pascoletti & P. Serafini, 2007. "Differential Conditions for Constrained Nonlinear Programming via Pareto Optimization," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 399-411, September.
    6. Regis, Rommel G., 2010. "Convergence guarantees for generalized adaptive stochastic search methods for continuous global optimization," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1187-1202, December.
    7. Bennet Gebken & Sebastian Peitz & Michael Dellnitz, 2019. "On the hierarchical structure of Pareto critical sets," Journal of Global Optimization, Springer, vol. 73(4), pages 891-913, April.
    8. Rommel G. Regis, 2016. "On the Convergence of Adaptive Stochastic Search Methods for Constrained and Multi-objective Black-Box Optimization," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 932-959, September.
    9. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    10. Shukla, Pradyumn Kumar & Deb, Kalyanmoy, 2007. "On finding multiple Pareto-optimal solutions using classical and evolutionary generating methods," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1630-1652, September.
    11. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    12. Golbabai, A. & Keramati, B., 2008. "Modified homotopy perturbation method for solving Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1528-1537.
    13. Kalyan Shankar Bhattacharjee & Hemant Kumar Singh & Tapabrata Ray, 2017. "An approach to generate comprehensive piecewise linear interpolation of pareto outcomes to aid decision making," Journal of Global Optimization, Springer, vol. 68(1), pages 71-93, May.
    14. Markus Hartikainen & Alberto Lovison, 2015. "PAINT–SiCon: constructing consistent parametric representations of Pareto sets in nonconvex multiobjective optimization," Journal of Global Optimization, Springer, vol. 62(2), pages 243-261, June.
    15. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    16. Li, Mingwu & Dankowicz, Harry, 2020. "Optimization with equality and inequality constraints using parameter continuation," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    17. Benjamin Martin & Alexandre Goldsztejn & Laurent Granvilliers & Christophe Jermann, 2016. "On continuation methods for non-linear bi-objective optimization: towards a certified interval-based approach," Journal of Global Optimization, Springer, vol. 64(1), pages 3-16, January.
    18. Honggang Wang, 2013. "Zigzag Search for Continuous Multiobjective Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 654-665, November.
    19. Qing-Rui He & Chun-Rong Chen & Sheng-Jie Li, 2023. "Spectral conjugate gradient methods for vector optimization problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 457-489, November.
    20. Miglierina Enrico, 2003. "Stability of critical points for vector valued functions and Pareto efficiency," Economics and Quantitative Methods qf0301, Department of Economics, University of Insubria.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:57:y:2013:i:2:p:385-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.