IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v73y2019i4d10.1007_s10898-019-00737-6.html
   My bibliography  Save this article

On the hierarchical structure of Pareto critical sets

Author

Listed:
  • Bennet Gebken

    (Paderborn University)

  • Sebastian Peitz

    (Paderborn University)

  • Michael Dellnitz

    (Paderborn University)

Abstract

In this article we show that the boundary of the Pareto critical set of an unconstrained multiobjective optimization problem (MOP) consists of Pareto critical points of subproblems where only a subset of the set of objective functions is taken into account. If the Pareto critical set is completely described by its boundary (e.g., if we have more objective functions than dimensions in decision space), then this can be used to efficiently solve the MOP by solving a number of MOPs with fewer objective functions. If this is not the case, the results can still give insight into the structure of the Pareto critical set.

Suggested Citation

  • Bennet Gebken & Sebastian Peitz & Michael Dellnitz, 2019. "On the hierarchical structure of Pareto critical sets," Journal of Global Optimization, Springer, vol. 73(4), pages 891-913, April.
  • Handle: RePEc:spr:jglopt:v:73:y:2019:i:4:d:10.1007_s10898-019-00737-6
    DOI: 10.1007/s10898-019-00737-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00737-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00737-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. J. Lowe & J.-F. Thisse & J. E. Ward & R. E. Wendell, 1984. "On Efficient Solutions to Multiple Objective Mathematical Programs," Management Science, INFORMS, vol. 30(11), pages 1346-1349, November.
    2. E. Miglierina & E. Molho & M. Rocca, 2008. "Critical Points Index for Vector Functions and Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 138(3), pages 479-496, September.
    3. M. Dellnitz & O. Schütze & T. Hestermeyer, 2005. "Covering Pareto Sets by Multilevel Subdivision Techniques," Journal of Optimization Theory and Applications, Springer, vol. 124(1), pages 113-136, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bennet Gebken & Sebastian Peitz, 2021. "An Efficient Descent Method for Locally Lipschitz Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 696-723, March.
    2. Bennet Gebken & Sebastian Peitz, 2021. "Inverse multiobjective optimization: Inferring decision criteria from data," Journal of Global Optimization, Springer, vol. 80(1), pages 3-29, May.
    3. Bennet Gebken & Katharina Bieker & Sebastian Peitz, 2023. "On the structure of regularization paths for piecewise differentiable regularization terms," Journal of Global Optimization, Springer, vol. 85(3), pages 709-741, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farshad Noravesh & Kristiaan Kerstens, 2022. "Some connections between higher moments portfolio optimization methods," Papers 2201.00205, arXiv.org.
    2. Alzorba, Shaghaf & Günther, Christian & Popovici, Nicolae & Tammer, Christiane, 2017. "A new algorithm for solving planar multiobjective location problems involving the Manhattan norm," European Journal of Operational Research, Elsevier, vol. 258(1), pages 35-46.
    3. Lindroth, Peter & Patriksson, Michael & Strömberg, Ann-Brith, 2010. "Approximating the Pareto optimal set using a reduced set of objective functions," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1519-1534, December.
    4. Carlos Ignacio Hernández Castellanos & Oliver Schütze & Jian-Qiao Sun & Guillermo Morales-Luna & Sina Ober-Blöbaum, 2020. "Numerical Computation of Lightly Multi-Objective Robust Optimal Solutions by Means of Generalized Cell Mapping," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    5. Naoki Hamada & Shunsuke Ichiki, 2022. "Free Disposal Hull Condition to Verify When Efficiency Coincides with Weak Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 248-270, January.
    6. Clempner, Julio B. & Poznyak, Alexander S., 2016. "Solving the Pareto front for multiobjective Markov chains using the minimum Euclidean distance gradient-based optimization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 142-160.
    7. Oliver Cuate & Antonin Ponsich & Lourdes Uribe & Saúl Zapotecas-Martínez & Adriana Lara & Oliver Schütze, 2019. "A New Hybrid Evolutionary Algorithm for the Treatment of Equality Constrained MOPs," Mathematics, MDPI, vol. 8(1), pages 1-25, December.
    8. Paritosh Jha & Marco Cucculelli, 2023. "Enhancing the predictive performance of ensemble models through novel multi-objective strategies: evidence from credit risk and business model innovation survey data," Annals of Operations Research, Springer, vol. 325(2), pages 1029-1047, June.
    9. Nicolae Popovici & Matteo Rocca, 2010. "Pareto reducibility of vector variational inequalities," Economics and Quantitative Methods qf1004, Department of Economics, University of Insubria.
    10. Francisco Ruiz & Lourdes Rey & María Muñoz, 2008. "A graphical characterization of the efficient set for convex multiobjective problems," Annals of Operations Research, Springer, vol. 164(1), pages 115-126, November.
    11. Bennet Gebken & Sebastian Peitz, 2021. "An Efficient Descent Method for Locally Lipschitz Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 696-723, March.
    12. Alexander Engau & Margaret M. Wiecek, 2008. "Interactive Coordination of Objective Decompositions in Multiobjective Programming," Management Science, INFORMS, vol. 54(7), pages 1350-1363, July.
    13. Lourdes Uribe & Johan M Bogoya & Andrés Vargas & Adriana Lara & Günter Rudolph & Oliver Schütze, 2020. "A Set Based Newton Method for the Averaged Hausdorff Distance for Multi-Objective Reference Set Problems," Mathematics, MDPI, vol. 8(10), pages 1-29, October.
    14. Jornada, Daniel & Leon, V. Jorge, 2016. "Biobjective robust optimization over the efficient set for Pareto set reduction," European Journal of Operational Research, Elsevier, vol. 252(2), pages 573-586.
    15. Psarras, J. & Capros, P. & Samouilidis, J.-E., 1990. "4.5. Multiobjective programming," Energy, Elsevier, vol. 15(7), pages 583-605.
    16. Johan M. Bogoya & Andrés Vargas & Oliver Schütze, 2019. "The Averaged Hausdorff Distances in Multi-Objective Optimization: A Review," Mathematics, MDPI, vol. 7(10), pages 1-35, September.
    17. Alberto Lovison, 2013. "Global search perspectives for multiobjective optimization," Journal of Global Optimization, Springer, vol. 57(2), pages 385-398, October.
    18. Alberto Lovison & Kaisa Miettinen, 2021. "On the Extension of the DIRECT Algorithm to Multiple Objectives," Journal of Global Optimization, Springer, vol. 79(2), pages 387-412, February.
    19. Nicolae Popovici, 2017. "A decomposition approach to vector equilibrium problems," Annals of Operations Research, Springer, vol. 251(1), pages 105-115, April.
    20. Oliver Cuate & Oliver Schütze, 2020. "Pareto Explorer for Finding the Knee for Many Objective Optimization Problems," Mathematics, MDPI, vol. 8(10), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:73:y:2019:i:4:d:10.1007_s10898-019-00737-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.