IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v86y2023i2d10.1007_s10589-023-00508-w.html
   My bibliography  Save this article

Spectral conjugate gradient methods for vector optimization problems

Author

Listed:
  • Qing-Rui He

    (Chongqing University)

  • Chun-Rong Chen

    (Chongqing University)

  • Sheng-Jie Li

    (Chongqing University)

Abstract

In this work, we present an extension of the spectral conjugate gradient (SCG) methods for solving unconstrained vector optimization problems, with respect to the partial order induced by a pointed, closed and convex cone with a nonempty interior. We first study the direct extension version of the SCG methods and its global convergence without imposing an explicit restriction on parameters. It shows that the methods may lose their good scalar properties, like yielding descent directions, in the vector setting. By using a truncation technique, we then propose a modified self-adjusting SCG algorithm which is more suitable for various parameters. Global convergence of the new scheme covers the vector extensions of three different spectral parameters and the corresponding Perry, Andrei, and Dai–Kou conjugate parameters (SP, N, and JC schemes, respectively) without regular restarts and any convex assumption. Under inexact line searches, we prove that the sequences generated by the proposed methods find points that satisfy the first-order necessary condition for Pareto-optimality. Finally, numerical experiments illustrating the practical behavior of the methods are presented.

Suggested Citation

  • Qing-Rui He & Chun-Rong Chen & Sheng-Jie Li, 2023. "Spectral conjugate gradient methods for vector optimization problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 457-489, November.
  • Handle: RePEc:spr:coopap:v:86:y:2023:i:2:d:10.1007_s10589-023-00508-w
    DOI: 10.1007/s10589-023-00508-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00508-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00508-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    2. Ceng, Lu-Chuan & Yao, Jen-Chih, 2007. "Approximate proximal methods in vector optimization," European Journal of Operational Research, Elsevier, vol. 183(1), pages 1-19, November.
    3. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2023. "An accelerated proximal gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 86(2), pages 421-455, November.
    4. C. Hillermeier, 2001. "Generalized Homotopy Approach to Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 557-583, September.
    5. Thai Chuong, 2013. "Newton-like methods for efficient solutions in vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 495-516, April.
    6. Parvaneh Faramarzi & Keyvan Amini, 2019. "A Modified Spectral Conjugate Gradient Method with Global Convergence," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 667-690, August.
    7. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    8. Avinoam Perry, 1978. "Technical Note—A Modified Conjugate Gradient Algorithm," Operations Research, INFORMS, vol. 26(6), pages 1073-1078, December.
    9. Kanako Mita & Ellen H. Fukuda & Nobuo Yamashita, 2019. "Nonmonotone line searches for unconstrained multiobjective optimization problems," Journal of Global Optimization, Springer, vol. 75(1), pages 63-90, September.
    10. Andrei, Neculai, 2010. "Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 204(3), pages 410-420, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingjie Hu & Ruyun Li & Yanyan Zhang & Zhibin Zhu, 2024. "On the Extension of Dai-Liao Conjugate Gradient Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 810-843, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    2. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    3. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    4. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    5. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    6. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    7. Qingjie Hu & Ruyun Li & Yanyan Zhang & Zhibin Zhu, 2024. "On the Extension of Dai-Liao Conjugate Gradient Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 810-843, October.
    8. Chen, Wang & Yang, Xinmin & Zhao, Yong, 2023. "Memory gradient method for multiobjective optimization," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    9. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    10. Parvaneh Faramarzi & Keyvan Amini, 2019. "A Modified Spectral Conjugate Gradient Method with Global Convergence," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 667-690, August.
    11. Parvaneh Faramarzi & Keyvan Amini, 2021. "A spectral three-term Hestenes–Stiefel conjugate gradient method," 4OR, Springer, vol. 19(1), pages 71-92, March.
    12. Thai Chuong, 2013. "Newton-like methods for efficient solutions in vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 495-516, April.
    13. Kaori Sugiki & Yasushi Narushima & Hiroshi Yabe, 2012. "Globally Convergent Three-Term Conjugate Gradient Methods that Use Secant Conditions and Generate Descent Search Directions for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 733-757, June.
    14. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    15. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    16. Golbabai, A. & Keramati, B., 2008. "Modified homotopy perturbation method for solving Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1528-1537.
    17. Villacorta, Kely D.V. & Oliveira, P. Roberto, 2011. "An interior proximal method in vector optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 485-492, November.
    18. Kalyan Shankar Bhattacharjee & Hemant Kumar Singh & Tapabrata Ray, 2017. "An approach to generate comprehensive piecewise linear interpolation of pareto outcomes to aid decision making," Journal of Global Optimization, Springer, vol. 68(1), pages 71-93, May.
    19. Bassim A. Hassan & Issam A. R. Moghrabi & Thaair A. Ameen & Ranen M. Sulaiman & Ibrahim Mohammed Sulaiman, 2024. "Image Noise Reduction and Solution of Unconstrained Minimization Problems via New Conjugate Gradient Methods," Mathematics, MDPI, vol. 12(17), pages 1-12, September.
    20. Nataj, Sarah & Lui, S.H., 2020. "Superlinear convergence of nonlinear conjugate gradient method and scaled memoryless BFGS method based on assumptions about the initial point," Applied Mathematics and Computation, Elsevier, vol. 369(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:86:y:2023:i:2:d:10.1007_s10589-023-00508-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.