IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v16y2019i4d10.1007_s10287-018-0337-6.html
   My bibliography  Save this article

Notoriously hard (mixed-)binary QPs: empirical evidence on new completely positive approaches

Author

Listed:
  • Immanuel M. Bomze

    (Universität Wien)

  • Jianqiang Cheng

    (University of Arizona)

  • Peter J. C. Dickinson

    (University of Twente)

  • Abdel Lisser

    (Université Paris Sud - XI)

  • Jia Liu

    (Xi’an Jiaotong University)

Abstract

By now, many copositive reformulations of mixed-binary QPs have been discussed, triggered by Burer’s seminal characterization from 2009. In conic optimization, it is very common to use approximation hierarchies based on positive-semidefinite (psd) matrices where the order increases with the level of the approximation. Our purpose is to keep the psd matrix orders relatively small to avoid memory size problems in interior point solvers. Based upon on a recent discussion on various variants of completely positive reformulations and their relaxations (Bomze et al. in Math Program 166(1–2):159–184, 2017), we here present a small study of the notoriously hard multidimensional quadratic knapsack problem and quadratic assignment problem. Our observations add some empirical evidence on performance differences among the above mentioned variants. We also propose an alternative approach using penalization of various classes of (aggregated) constraints, along with some theoretical convergence analysis. This approach is in some sense similar in spirit to the alternating projection method proposed in Burer (Math Program Comput 2:1–19, 2010) which completely avoids SDPs, but for which no convergence proof is available yet.

Suggested Citation

  • Immanuel M. Bomze & Jianqiang Cheng & Peter J. C. Dickinson & Abdel Lisser & Jia Liu, 2019. "Notoriously hard (mixed-)binary QPs: empirical evidence on new completely positive approaches," Computational Management Science, Springer, vol. 16(4), pages 593-619, October.
  • Handle: RePEc:spr:comgts:v:16:y:2019:i:4:d:10.1007_s10287-018-0337-6
    DOI: 10.1007/s10287-018-0337-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-018-0337-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-018-0337-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    2. Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
    2. Zhijian Lai & Akiko Yoshise, 2022. "Completely positive factorization by a Riemannian smoothing method," Computational Optimization and Applications, Springer, vol. 83(3), pages 933-966, December.
    3. Jinyan Fan & Jiawang Nie & Anwa Zhou, 2019. "Completely Positive Binary Tensors," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1087-1100, August.
    4. Andrey Afonin & Roland Hildebrand & Peter J. C. Dickinson, 2021. "The extreme rays of the $$6\times 6$$ 6 × 6 copositive cone," Journal of Global Optimization, Springer, vol. 79(1), pages 153-190, January.
    5. Badenbroek, Riley & de Klerk, Etienne, 2022. "An analytic center cutting plane method to determine complete positivity of a matrix," Other publications TiSEM 088da653-b943-4ed0-9720-6, Tilburg University, School of Economics and Management.
    6. Immanuel M. Bomze & Vaithilingam Jeyakumar & Guoyin Li, 2018. "Extended trust-region problems with one or two balls: exact copositive and Lagrangian relaxations," Journal of Global Optimization, Springer, vol. 71(3), pages 551-569, July.
    7. Faizan Ahmed & Mirjam Dür & Georg Still, 2013. "Copositive Programming via Semi-Infinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 322-340, November.
    8. Immanuel M. Bomze & Bo Peng, 2023. "Conic formulation of QPCCs applied to truly sparse QPs," Computational Optimization and Applications, Springer, vol. 84(3), pages 703-735, April.
    9. Yuzhu Wang & Akihiro Tanaka & Akiko Yoshise, 2021. "Polyhedral approximations of the semidefinite cone and their application," Computational Optimization and Applications, Springer, vol. 78(3), pages 893-913, April.
    10. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2017. "Copositivity Detection of Tensors: Theory and Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 746-761, September.
    11. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2018. "Copositive tensor detection and its applications in physics and hypergraphs," Computational Optimization and Applications, Springer, vol. 69(1), pages 133-158, January.
    12. Anwa Zhou & Jinyan Fan, 2015. "Interiors of completely positive cones," Journal of Global Optimization, Springer, vol. 63(4), pages 653-675, December.
    13. Riley Badenbroek & Etienne de Klerk, 2022. "An Analytic Center Cutting Plane Method to Determine Complete Positivity of a Matrix," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1115-1125, March.
    14. Akihiro Tanaka & Akiko Yoshise, 2018. "LP-based tractable subcones of the semidefinite plus nonnegative cone," Annals of Operations Research, Springer, vol. 265(1), pages 155-182, June.
    15. Badenbroek, Riley & de Klerk, Etienne, 2020. "An Analytic Center Cutting Plane Method to Determine Complete Positivity of a Matrix," Other publications TiSEM 876ff1ab-036c-4635-9688-1, Tilburg University, School of Economics and Management.
    16. Anwa Zhou & Jinyan Fan, 2018. "Completely positive tensor recovery with minimal nuclear value," Computational Optimization and Applications, Springer, vol. 70(2), pages 419-441, June.
    17. Jinyan Fan & Anwa Zhou, 2017. "A semidefinite algorithm for completely positive tensor decomposition," Computational Optimization and Applications, Springer, vol. 66(2), pages 267-283, March.
    18. Jacek Gondzio & E. Alper Yıldırım, 2021. "Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations," Journal of Global Optimization, Springer, vol. 81(2), pages 293-321, October.
    19. Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
    20. Gabriele Eichfelder & Patrick Groetzner, 2022. "A note on completely positive relaxations of quadratic problems in a multiobjective framework," Journal of Global Optimization, Springer, vol. 82(3), pages 615-626, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:16:y:2019:i:4:d:10.1007_s10287-018-0337-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.