IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v46y2010i4p571-580.html
   My bibliography  Save this article

A field guide to the matrix classes found in the literature of the linear complementarity problem

Author

Listed:
  • Richard Cottle

Abstract

No abstract is available for this item.

Suggested Citation

  • Richard Cottle, 2010. "A field guide to the matrix classes found in the literature of the linear complementarity problem," Journal of Global Optimization, Springer, vol. 46(4), pages 571-580, April.
  • Handle: RePEc:spr:jglopt:v:46:y:2010:i:4:p:571-580
    DOI: 10.1007/s10898-009-9441-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-009-9441-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-009-9441-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. E. Lemke, 1965. "Bimatrix Equilibrium Points and Mathematical Programming," Management Science, INFORMS, vol. 11(7), pages 681-689, May.
    2. B. Curtis Eaves, 1971. "The Linear Complementarity Problem," Management Science, INFORMS, vol. 17(9), pages 612-634, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    2. Adelgren, Nathan & Wiecek, Margaret M., 2016. "A two-phase algorithm for the multiparametric linear complementarity problem," European Journal of Operational Research, Elsevier, vol. 254(3), pages 715-738.
    3. G. S. R. Murthy & K. C. Sivakumar & P. Sushmitha, 2020. "T. Parthasarathy’s contributions to complementarity problems: a survey," Annals of Operations Research, Springer, vol. 287(2), pages 867-894, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. R. Mohan, 1997. "Degeneracy Subgraph of the Lemke Complementary Pivot Algorithm and Anticycling Rule," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 409-423, August.
    2. Bernhard Stengel, 2010. "Computation of Nash equilibria in finite games: introduction to the symposium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 1-7, January.
    3. Sreekumaran, Harikrishnan & Hota, Ashish R. & Liu, Andrew L. & Uhan, Nelson A. & Sundaram, Shreyas, 2021. "Equilibrium strategies for multiple interdictors on a common network," European Journal of Operational Research, Elsevier, vol. 288(2), pages 523-538.
    4. Yin Chen & Chuangyin Dang, 2019. "A Reformulation-Based Simplicial Homotopy Method for Approximating Perfect Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 877-891, October.
    5. Anne Balthasar, 2010. "Equilibrium tracing in strategic-form games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 39-54, January.
    6. Govindan, Srihari & Wilson, Robert, 2003. "A global Newton method to compute Nash equilibria," Journal of Economic Theory, Elsevier, vol. 110(1), pages 65-86, May.
    7. Gailly, B. & Installe, M. & Smeers, Y., 2001. "A new resolution method for the parametric linear complementarity problem," European Journal of Operational Research, Elsevier, vol. 128(3), pages 639-646, February.
    8. Shu-Cherng Fang & Elmor L. Peterson, 1979. "A Unification and Generalization of the Eaves and Kojima Fixed Point Representations of the Complementarity Problem," Discussion Papers 365, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    9. Zhang, Bin, 2012. "Multi-tier binary solution method for multi-product newsvendor problem with multiple constraints," European Journal of Operational Research, Elsevier, vol. 218(2), pages 426-434.
    10. Talman, A.J.J. & van der Heyden, L., 1981. "Algorithms for the linear complementarity problem which allow an arbitrary starting point," Research Memorandum FEW 99, Tilburg University, School of Economics and Management.
    11. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    12. Richard Asmuth, 1978. "Studying Economic Equilibria on Affine Networks Via Lemke's Algorithm," Discussion Papers 314, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    13. Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
    14. Zhe Liu & Yahya Fathi, 2012. "The nearest point problem in a polyhedral set and its extensions," Computational Optimization and Applications, Springer, vol. 53(1), pages 115-130, September.
    15. Thiruvankatachari Parthasarathy & Gomatam Ravindran & Sunil Kumar, 2022. "On Semimonotone Matrices, $$R_0$$ R 0 -Matrices and Q-Matrices," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 131-147, October.
    16. Bidard, Christian, 2014. "The Ricardian rent theory: an overview," Centro Sraffa Working Papers CSWP8, Centro di Ricerche e Documentazione "Piero Sraffa".
    17. A. T. Phillips & J. B. Rosen, 1990. "Guaranteed ϵ‐approximate solution for indefinite quadratic global minimization," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 499-514, August.
    18. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Computing Integral Solutions of Complementarity Problems," Other publications TiSEM b8e0c74e-2219-4ab0-99a2-0, Tilburg University, School of Economics and Management.
    19. Christian Bidard, 2015. "An oddity property for cross-dual games," EconomiX Working Papers 2015-4, University of Paris Nanterre, EconomiX.
    20. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2007. "A vector labeling method for solving discrete zero point and complementarity problems," Other publications TiSEM 070869d0-4e42-4d34-85f9-b, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:46:y:2010:i:4:p:571-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.