Global optimization for the generalized polynomial sum of ratios problem
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-010-9593-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shen Pei-Ping & Yuan Gui-Xia, 2007. "Global optimization for the sum of generalized polynomial fractional functions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(3), pages 445-459, June.
- H. P. Benson, 2002. "Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 1-29, January.
- Qu, Shaojian & Zhang, Kecun & Wang, Fusheng, 2008. "A global optimization using linear relaxation for generalized geometric programming," European Journal of Operational Research, Elsevier, vol. 190(2), pages 345-356, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tajbakhsh, Alireza & Hassini, Elkafi, 2018. "Evaluating sustainability performance in fossil-fuel power plants using a two-stage data envelopment analysis," Energy Economics, Elsevier, vol. 74(C), pages 154-178.
- YongJin Kim & YunChol Jong & JinWon Yu, 2021. "A parametric solution method for a generalized fractional programming problem," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(4), pages 971-989, December.
- Shen, Peiping & Zhu, Zeyi & Chen, Xiao, 2019. "A practicable contraction approach for the sum of the generalized polynomial ratios problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 36-48.
- Federico Cabassi & Luca Consolini & Marco Locatelli, 2018. "Time-optimal velocity planning by a bound-tightening technique," Computational Optimization and Applications, Springer, vol. 70(1), pages 61-90, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
- Dey, Shibshankar & Kim, Cheolmin & Mehrotra, Sanjay, 2024. "An algorithm for stochastic convex-concave fractional programs with applications to production efficiency and equitable resource allocation," European Journal of Operational Research, Elsevier, vol. 315(3), pages 980-990.
- Tseng, Chung-Li & Zhan, Yiduo & Zheng, Qipeng P. & Kumar, Manish, 2015. "A MILP formulation for generalized geometric programming using piecewise-linear approximations," European Journal of Operational Research, Elsevier, vol. 245(2), pages 360-370.
- Ying Ji & Mark Goh & Robert Souza, 2016. "Proximal Point Algorithms for Multi-criteria Optimization with the Difference of Convex Objective Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 280-289, April.
- H. P. Benson, 2010. "Branch-and-Bound Outer Approximation Algorithm for Sum-of-Ratios Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 1-18, July.
- Ashtiani, Alireza M. & Ferreira, Paulo A.V., 2015. "A branch-and-cut algorithm for a class of sum-of-ratios problems," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 596-608.
- Peiping Shen & Xiaoai Li, 2013. "Branch-reduction-bound algorithm for generalized geometric programming," Journal of Global Optimization, Springer, vol. 56(3), pages 1123-1142, July.
- Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "FGP approach to quadratically constrained multi-objective quadratic fractional programming with parametric functions," OPSEARCH, Springer;Operational Research Society of India, vol. 59(2), pages 594-602, June.
- J.-Y. Lin & S. Schaible & R.-L. Sheu, 2010. "Minimization of Isotonic Functions Composed of Fractions," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 581-601, September.
- Gruzdeva, Tatiana V. & Strekalovsky, Alexander S., 2018. "On solving the sum-of-ratios problem," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 260-269.
- Mojtaba Borza & Azmin Sham Rambely, 2021. "A Linearization to the Sum of Linear Ratios Programming Problem," Mathematics, MDPI, vol. 9(9), pages 1-10, April.
- Mirjam Dür & Charoenchai Khompatraporn & Zelda Zabinsky, 2007. "Solving fractional problems with dynamic multistart improving hit-and-run," Annals of Operations Research, Springer, vol. 156(1), pages 25-44, December.
- Xing, Li-Ning & Chen, Ying-Wu & Yang, Ke-Wei, 2009. "A novel mutation operator based on the immunity operation," European Journal of Operational Research, Elsevier, vol. 197(2), pages 830-833, September.
- Tajbakhsh, Alireza & Hassini, Elkafi, 2018. "Evaluating sustainability performance in fossil-fuel power plants using a two-stage data envelopment analysis," Energy Economics, Elsevier, vol. 74(C), pages 154-178.
- YongJin Kim & YunChol Jong & JinWon Yu, 2021. "A parametric solution method for a generalized fractional programming problem," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(4), pages 971-989, December.
- Takahito Kuno & Toshiyuki Masaki, 2013. "A practical but rigorous approach to sum-of-ratios optimization in geometric applications," Computational Optimization and Applications, Springer, vol. 54(1), pages 93-109, January.
- Kexin Yin & Xiao Fang & Bintong Chen & Olivia R. Liu Sheng, 2023. "Diversity Preference-Aware Link Recommendation for Online Social Networks," Information Systems Research, INFORMS, vol. 34(4), pages 1398-1414, December.
- Shen, Peiping & Zhu, Zeyi & Chen, Xiao, 2019. "A practicable contraction approach for the sum of the generalized polynomial ratios problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 36-48.
- Ruan, N. & Gao, D.Y., 2015. "Global solutions to fractional programming problem with ratio of nonconvex functions," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 66-72.
More about this item
Keywords
Global optimization; Generalized polynomial; Fractional programming; Sum of ratios; Nonisolated optimal solution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:50:y:2011:i:3:p:439-455. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.