IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v169y2016i1d10.1007_s10957-015-0847-0.html
   My bibliography  Save this article

Proximal Point Algorithms for Multi-criteria Optimization with the Difference of Convex Objective Functions

Author

Listed:
  • Ying Ji

    (University of Shanghai for Science and Technology
    Harbin Institute of Technology
    National University of Singapore)

  • Mark Goh

    (National University of Singapore
    National University of Singapore)

  • Robert Souza

    (National University of Singapore)

Abstract

This paper focuses on solving a class of multi-criteria optimization with the difference of convex objective functions. Proximal point algorithms, extensively studied for scalar optimization, are extended to our setting. We show that the proposed algorithms are well posed and globally convergent to a critical point. For an application, the new methods are used to a multi-criteria model arising in portfolio optimization. The numerical results show the efficiency of our methods.

Suggested Citation

  • Ying Ji & Mark Goh & Robert Souza, 2016. "Proximal Point Algorithms for Multi-criteria Optimization with the Difference of Convex Objective Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 280-289, April.
  • Handle: RePEc:spr:joptap:v:169:y:2016:i:1:d:10.1007_s10957-015-0847-0
    DOI: 10.1007/s10957-015-0847-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0847-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0847-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hwang, Soosung & Satchell, Stephen E, 1999. "Modelling Emerging Market Risk Premia Using Higher Moments," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 4(4), pages 271-296, October.
    2. Glaydston Carvalho Bento & J.X. Cruz Neto & Antoine Soubeyran, 2014. "A Proximal Point-Type Method for Multicriteria Optimization," Post-Print hal-01463765, HAL.
    3. Villacorta, Kely D.V. & Oliveira, P. Roberto, 2011. "An interior proximal method in vector optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 485-492, November.
    4. Qu, Shaojian & Zhang, Kecun & Wang, Fusheng, 2008. "A global optimization using linear relaxation for generalized geometric programming," European Journal of Operational Research, Elsevier, vol. 190(2), pages 345-356, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Antoine Soubeyran & João Carlos Oliveira Souza, 2020. "A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems," Computational Optimization and Applications, Springer, vol. 75(1), pages 263-290, January.
    2. Outi Montonen & Kaisa Joki, 2018. "Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints," Journal of Global Optimization, Springer, vol. 72(3), pages 403-429, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    2. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Antoine Soubeyran & João Carlos Oliveira Souza, 2020. "A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems," Computational Optimization and Applications, Springer, vol. 75(1), pages 263-290, January.
    3. Erik Alex Papa Quiroz & Hellena Christina Fernandes Apolinário & Kely Diana Villacorta & Paulo Roberto Oliveira, 2019. "A Linear Scalarization Proximal Point Method for Quasiconvex Multiobjective Minimization," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1028-1052, December.
    4. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.
    5. G. D. Gettinby & C. D. Sinclair & D. M. Power & R. A. Brown, 2004. "An Analysis of the Distribution of Extreme Share Returns in the UK from 1975 to 2000," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 607-646, June.
    6. Martin Eling, 2006. "Performance measurement of hedge funds using data envelopment analysis," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(4), pages 442-471, December.
    7. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    8. Alexander Eastman & Brian Lucey, 2008. "Skewness and asymmetry in futures returns and volumes," Applied Financial Economics, Taylor & Francis Journals, vol. 18(10), pages 777-800.
    9. Chang, Bo Young & Christoffersen, Peter & Jacobs, Kris, 2013. "Market skewness risk and the cross section of stock returns," Journal of Financial Economics, Elsevier, vol. 107(1), pages 46-68.
    10. M. Glawischnig & I. Seidl, 2013. "Portfolio optimization with serially correlated, skewed and fat tailed index returns," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 153-176, January.
    11. Malevergne, Y. & Sornette, D., 2007. "Self-consistent asset pricing models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 149-171.
    12. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    13. Annaert, Jan & De Ceuster, Marc & Van Cappellen, Jef, 2023. "Can average skewness really predict financial returns? The euro area case," Finance Research Letters, Elsevier, vol. 52(C).
    14. Asteriou, Dimitrios & Bashmakova, Yuliya, 2013. "Assessing the impact of oil returns on emerging stock markets: A panel data approach for ten Central and Eastern European Countries," Energy Economics, Elsevier, vol. 38(C), pages 204-211.
    15. Maheu, John M. & McCurdy, Thomas H. & Zhao, Xiaofei, 2013. "Do jumps contribute to the dynamics of the equity premium?," Journal of Financial Economics, Elsevier, vol. 110(2), pages 457-477.
    16. David Allen & Stephen Satchell & Colin Lizieri, 2024. "Quantifying the non-Gaussian gain," Journal of Asset Management, Palgrave Macmillan, vol. 25(1), pages 1-18, February.
    17. Tseng, Chung-Li & Zhan, Yiduo & Zheng, Qipeng P. & Kumar, Manish, 2015. "A MILP formulation for generalized geometric programming using piecewise-linear approximations," European Journal of Operational Research, Elsevier, vol. 245(2), pages 360-370.
    18. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    19. Kodongo, Odongo & Ojah, Kalu, 2014. "The conditional pricing of currency and inflation risks in Africa's equity markets," MPRA Paper 56100, University Library of Munich, Germany.
    20. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:169:y:2016:i:1:d:10.1007_s10957-015-0847-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.