IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v190y2008i2p345-356.html
   My bibliography  Save this article

A global optimization using linear relaxation for generalized geometric programming

Author

Listed:
  • Qu, Shaojian
  • Zhang, Kecun
  • Wang, Fusheng

Abstract

Many local optimal solution methods have been developed for solving generalized geometric programming (GGP). But up to now, less work has been devoted to solving global optimization of (GGP) problem due to the inherent difficulty. This paper considers the global minimum of (GGP) problems. By utilizing an exponential variable transformation and the inherent property of the exponential function and some other techniques the initial nonlinear and nonconvex (GGP) problem is reduced to a sequence of linear programming problems. The proposed algorithm is proven that it is convergent to the global minimum through the solutions of a series of linear programming problems. Test results indicate that the proposed algorithm is extremely robust and can be used successfully to solve the global minimum of (GGP) on a microcomputer.

Suggested Citation

  • Qu, Shaojian & Zhang, Kecun & Wang, Fusheng, 2008. "A global optimization using linear relaxation for generalized geometric programming," European Journal of Operational Research, Elsevier, vol. 190(2), pages 345-356, October.
  • Handle: RePEc:eee:ejores:v:190:y:2008:i:2:p:345-356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00628-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing, Li-Ning & Chen, Ying-Wu & Yang, Ke-Wei, 2009. "A novel mutation operator based on the immunity operation," European Journal of Operational Research, Elsevier, vol. 197(2), pages 830-833, September.
    2. Tseng, Chung-Li & Zhan, Yiduo & Zheng, Qipeng P. & Kumar, Manish, 2015. "A MILP formulation for generalized geometric programming using piecewise-linear approximations," European Journal of Operational Research, Elsevier, vol. 245(2), pages 360-370.
    3. Peiping Shen & Yuan Ma & Yongqiang Chen, 2011. "Global optimization for the generalized polynomial sum of ratios problem," Journal of Global Optimization, Springer, vol. 50(3), pages 439-455, July.
    4. Shen, Peiping & Zhu, Zeyi & Chen, Xiao, 2019. "A practicable contraction approach for the sum of the generalized polynomial ratios problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 36-48.
    5. Peiping Shen & Xiaoai Li, 2013. "Branch-reduction-bound algorithm for generalized geometric programming," Journal of Global Optimization, Springer, vol. 56(3), pages 1123-1142, July.
    6. Ying Ji & Mark Goh & Robert Souza, 2016. "Proximal Point Algorithms for Multi-criteria Optimization with the Difference of Convex Objective Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 280-289, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:190:y:2008:i:2:p:345-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.