IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v268y2015icp596-608.html
   My bibliography  Save this article

A branch-and-cut algorithm for a class of sum-of-ratios problems

Author

Listed:
  • Ashtiani, Alireza M.
  • Ferreira, Paulo A.V.

Abstract

The problem of maximizing a sum of concave–convex ratios over a convex set is addressed. The projection of the problem onto the image space of the functions that describe the ratios leads to the equivalent problem of maximizing a sum of elementary ratios subject to a linear semi-infinite inequality constraint. A global optimization algorithm that integrates a branch-and-bound procedure for dealing with nonconcavities in the image space and an efficient relaxation procedure for handling the semi-infinite constraint is proposed and illustrated through numerical examples. Comparative (computational) analyses between the proposed algorithm and two alternative algorithms for solving sum-of-ratios problems are also presented.

Suggested Citation

  • Ashtiani, Alireza M. & Ferreira, Paulo A.V., 2015. "A branch-and-cut algorithm for a class of sum-of-ratios problems," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 596-608.
  • Handle: RePEc:eee:apmaco:v:268:y:2015:i:c:p:596-608
    DOI: 10.1016/j.amc.2015.06.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031500870X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.06.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alireza M. Ashtiani & Paulo A. V. Ferreira, 2011. "On the Solution of Generalized Multiplicative Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 411-419, May.
    2. Cambini, Riccardo & Sodini, Claudio, 2010. "A unifying approach to solve some classes of rank-three multiplicative and fractional programs involving linear functions," European Journal of Operational Research, Elsevier, vol. 207(1), pages 25-29, November.
    3. Benson, Harold P., 2007. "A simplicial branch and bound duality-bounds algorithm for the linear sum-of-ratios problem," European Journal of Operational Research, Elsevier, vol. 182(2), pages 597-611, October.
    4. Arthur M. Geoffrion, 1970. "Elements of Large-Scale Mathematical Programming Part I: Concepts," Management Science, INFORMS, vol. 16(11), pages 652-675, July.
    5. H. P. Benson, 2002. "Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 1-29, January.
    6. Rúbia Oliveira & Paulo Ferreira, 2010. "An outcome space approach for generalized convex multiplicative programs," Journal of Global Optimization, Springer, vol. 47(1), pages 107-118, May.
    7. Schaible, Siegfried, 1981. "Fractional programming: Applications and algorithms," European Journal of Operational Research, Elsevier, vol. 7(2), pages 111-120, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
    2. Jiao, Hongwei & Ma, Junqiao, 2022. "An efficient algorithm and complexity result for solving the sum of general affine ratios problem," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Shen, Peiping & Zhu, Zeyi & Chen, Xiao, 2019. "A practicable contraction approach for the sum of the generalized polynomial ratios problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 36-48.
    4. Gruzdeva, Tatiana V. & Strekalovsky, Alexander S., 2018. "On solving the sum-of-ratios problem," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 260-269.
    5. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2023. "Outcome-space branch-and-bound outer approximation algorithm for a class of non-convex quadratic programming problems," Journal of Global Optimization, Springer, vol. 86(1), pages 61-92, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peiping Shen & Kaimin Wang & Ting Lu, 2020. "Outer space branch and bound algorithm for solving linear multiplicative programming problems," Journal of Global Optimization, Springer, vol. 78(3), pages 453-482, November.
    2. Mojtaba Borza & Azmin Sham Rambely, 2021. "A Linearization to the Sum of Linear Ratios Programming Problem," Mathematics, MDPI, vol. 9(9), pages 1-10, April.
    3. Yunchol Jong & Yongjin Kim & Hyonchol Kim, 2024. "A method based on parametric convex programming for solving convex multiplicative programming problem," Journal of Global Optimization, Springer, vol. 90(3), pages 573-592, November.
    4. Jiao, Hong-Wei & Liu, San-Yang, 2015. "A practicable branch and bound algorithm for sum of linear ratios problem," European Journal of Operational Research, Elsevier, vol. 243(3), pages 723-730.
    5. Hongwei Jiao & Binbin Li & Wenqiang Yang, 2024. "A criterion-space branch-reduction-bound algorithm for solving generalized multiplicative problems," Journal of Global Optimization, Springer, vol. 89(3), pages 597-632, July.
    6. Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
    7. Dey, Shibshankar & Kim, Cheolmin & Mehrotra, Sanjay, 2024. "An algorithm for stochastic convex-concave fractional programs with applications to production efficiency and equitable resource allocation," European Journal of Operational Research, Elsevier, vol. 315(3), pages 980-990.
    8. Felipe Caro & Victor Martínez-de-Albéniz & Paat Rusmevichientong, 2014. "The Assortment Packing Problem: Multiperiod Assortment Planning for Short-Lived Products," Management Science, INFORMS, vol. 60(11), pages 2701-2721, November.
    9. Syam, Siddhartha S., 1998. "A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals," European Journal of Operational Research, Elsevier, vol. 108(1), pages 196-207, July.
    10. Fengqiao Luo & Sanjay Mehrotra, 2021. "A geometric branch and bound method for robust maximization of convex functions," Journal of Global Optimization, Springer, vol. 81(4), pages 835-859, December.
    11. Meijboom, B.R., 1986. "Planning in decentralized firms : a contribution to the theory on multilevel decisions," Other publications TiSEM 291e5a70-7bb8-4de3-be1f-0, Tilburg University, School of Economics and Management.
    12. João Costa & Maria Alves, 2013. "Enhancing computations of nondominated solutions in MOLFP via reference points," Journal of Global Optimization, Springer, vol. 57(3), pages 617-631, November.
    13. Jiao, Hongwei & Ma, Junqiao, 2022. "An efficient algorithm and complexity result for solving the sum of general affine ratios problem," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    15. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," Econometric Institute Research Papers ERS-2004-074-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Roy E. Marsten, 1975. "The Use of the Box Step Method in Discrete Optimization," NBER Working Papers 0086, National Bureau of Economic Research, Inc.
    17. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    18. Robbins, Thomas R. & Harrison, Terry P., 2010. "A stochastic programming model for scheduling call centers with global Service Level Agreements," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1608-1619, December.
    19. Lahrichi, Nadia & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter & Crişan, Gloria Cerasela & Vidal, Thibaut, 2015. "An integrative cooperative search framework for multi-decision-attribute combinatorial optimization: Application to the MDPVRP," European Journal of Operational Research, Elsevier, vol. 246(2), pages 400-412.
    20. Harold P. Benson, 2006. "Maximizing the ratio of two convex functions over a convex set," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 309-317, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:268:y:2015:i:c:p:596-608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.