IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v197y2009i2p830-833.html
   My bibliography  Save this article

A novel mutation operator based on the immunity operation

Author

Listed:
  • Xing, Li-Ning
  • Chen, Ying-Wu
  • Yang, Ke-Wei

Abstract

This paper presents a novel mutation operator based on the immunity operation. Also, the selection is integrated into both crossover and mutation operation. Experiments with our approach on many test functions resulted in near-optimal solutions in all cases. In comparison with several other algorithms, our approach achieved improved accuracy.

Suggested Citation

  • Xing, Li-Ning & Chen, Ying-Wu & Yang, Ke-Wei, 2009. "A novel mutation operator based on the immunity operation," European Journal of Operational Research, Elsevier, vol. 197(2), pages 830-833, September.
  • Handle: RePEc:eee:ejores:v:197:y:2009:i:2:p:830-833
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00566-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qu, Shaojian & Zhang, Kecun & Wang, Fusheng, 2008. "A global optimization using linear relaxation for generalized geometric programming," European Journal of Operational Research, Elsevier, vol. 190(2), pages 345-356, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tseng, Chung-Li & Zhan, Yiduo & Zheng, Qipeng P. & Kumar, Manish, 2015. "A MILP formulation for generalized geometric programming using piecewise-linear approximations," European Journal of Operational Research, Elsevier, vol. 245(2), pages 360-370.
    2. Peiping Shen & Xiaoai Li, 2013. "Branch-reduction-bound algorithm for generalized geometric programming," Journal of Global Optimization, Springer, vol. 56(3), pages 1123-1142, July.
    3. Shen, Peiping & Zhu, Zeyi & Chen, Xiao, 2019. "A practicable contraction approach for the sum of the generalized polynomial ratios problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 36-48.
    4. Ying Ji & Mark Goh & Robert Souza, 2016. "Proximal Point Algorithms for Multi-criteria Optimization with the Difference of Convex Objective Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 280-289, April.
    5. Peiping Shen & Yuan Ma & Yongqiang Chen, 2011. "Global optimization for the generalized polynomial sum of ratios problem," Journal of Global Optimization, Springer, vol. 50(3), pages 439-455, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:197:y:2009:i:2:p:830-833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.