IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v146y2010i1d10.1007_s10957-010-9647-8.html
   My bibliography  Save this article

Branch-and-Bound Outer Approximation Algorithm for Sum-of-Ratios Fractional Programs

Author

Listed:
  • H. P. Benson

    (University of Florida)

Abstract

In this article, a branch and-bound outer approximation algorithm is presented for globally solving a sum-of-ratios fractional programming problem. To solve this problem, the algorithm instead solves an equivalent problem that involves minimizing an indefinite quadratic function over a nonempty, compact convex set. This problem is globally solved by a branch-and-bound outer approximation approach that can create several closed-form linear inequality cuts per iteration. In contrast to pure outer approximation techniques, the algorithm does not require computing the new vertices that are created as these cuts are added. Computationally, the main work of the algorithm involves solving a sequence of convex programming problems whose feasible regions are identical to one another except for certain linear constraints. As a result, to solve these problems, an optimal solution to one problem can potentially be used to good effect as a starting solution for the next problem.

Suggested Citation

  • H. P. Benson, 2010. "Branch-and-Bound Outer Approximation Algorithm for Sum-of-Ratios Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 1-18, July.
  • Handle: RePEc:spr:joptap:v:146:y:2010:i:1:d:10.1007_s10957-010-9647-8
    DOI: 10.1007/s10957-010-9647-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-010-9647-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-010-9647-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arthur F. Veinott, 1967. "The Supporting Hyperplane Method for Unimodal Programming," Operations Research, INFORMS, vol. 15(1), pages 147-152, February.
    2. H. P. Benson, 2002. "Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 1-29, January.
    3. H. P. Benson, 2004. "On the Global Optimization of Sums of Linear Fractional Functions over a Convex Set," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 19-39, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. N. Yarahmadi & S. A. MirHassani & F. Hooshmand, 2023. "A heuristic method to find a quick feasible solution based on the ratio programming," Operational Research, Springer, vol. 23(3), pages 1-19, September.
    2. Yaohua Hu & Carisa Kwok Wai Yu & Xiaoqi Yang, 2019. "Incremental quasi-subgradient methods for minimizing the sum of quasi-convex functions," Journal of Global Optimization, Springer, vol. 75(4), pages 1003-1028, December.
    3. YongJin Kim & YunChol Jong & JinWon Yu, 2021. "A parametric solution method for a generalized fractional programming problem," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(4), pages 971-989, December.
    4. Mahdiloo, Mahdi & Toloo, Mehdi & Duong, Thach-Thao & Farzipoor Saen, Reza & Tatham, Peter, 2018. "Integrated data envelopment analysis: Linear vs. nonlinear model," European Journal of Operational Research, Elsevier, vol. 268(1), pages 255-267.
    5. Huang, Bingdi & Shen, Peiping, 2024. "An efficient branch and bound reduction algorithm for globally solving linear fractional programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruan, N. & Gao, D.Y., 2015. "Global solutions to fractional programming problem with ratio of nonconvex functions," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 66-72.
    2. Lin, Yun Hui & Wang, Yuan & He, Dongdong & Lee, Loo Hay, 2020. "Last-mile delivery: Optimal locker location under multinomial logit choice model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
    4. Felipe Serrano & Robert Schwarz & Ambros Gleixner, 2020. "On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm," Journal of Global Optimization, Springer, vol. 78(1), pages 161-179, September.
    5. H. P. Benson, 2007. "Solving Sum of Ratios Fractional Programs via Concave Minimization," Journal of Optimization Theory and Applications, Springer, vol. 135(1), pages 1-17, October.
    6. Dey, Shibshankar & Kim, Cheolmin & Mehrotra, Sanjay, 2024. "An algorithm for stochastic convex-concave fractional programs with applications to production efficiency and equitable resource allocation," European Journal of Operational Research, Elsevier, vol. 315(3), pages 980-990.
    7. Alfred Auslender & Miguel A. Goberna & Marco A. López, 2009. "Penalty and Smoothing Methods for Convex Semi-Infinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 303-319, May.
    8. Tapio Westerlund & Ville-Pekka Eronen & Marko M. Mäkelä, 2018. "On solving generalized convex MINLP problems using supporting hyperplane techniques," Journal of Global Optimization, Springer, vol. 71(4), pages 987-1011, August.
    9. Ville-Pekka Eronen & Jan Kronqvist & Tapio Westerlund & Marko M. Mäkelä & Napsu Karmitsa, 2017. "Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems," Journal of Global Optimization, Springer, vol. 69(2), pages 443-459, October.
    10. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
    11. Valerian Bulatov, 2010. "Methods of embedding-cutting off in problems of mathematical programming," Journal of Global Optimization, Springer, vol. 48(1), pages 3-15, September.
    12. Jiao, Hongwei & Ma, Junqiao, 2022. "An efficient algorithm and complexity result for solving the sum of general affine ratios problem," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    13. Daniel Dörfler, 2022. "On the Approximation of Unbounded Convex Sets by Polyhedra," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 265-287, July.
    14. Ashtiani, Alireza M. & Ferreira, Paulo A.V., 2015. "A branch-and-cut algorithm for a class of sum-of-ratios problems," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 596-608.
    15. Qingyun Tian & Yun Hui Lin & David Z. W. Wang, 2021. "Autonomous and conventional bus fleet optimization for fixed-route operations considering demand uncertainty," Transportation, Springer, vol. 48(5), pages 2735-2763, October.
    16. Frederic H. Murphy, 1972. "Row Dropping Procedures for Cutting Plane Algorithms," Discussion Papers 16, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    17. Wim Ackooij & Welington Oliveira, 2014. "Level bundle methods for constrained convex optimization with various oracles," Computational Optimization and Applications, Springer, vol. 57(3), pages 555-597, April.
    18. J.-Y. Lin & S. Schaible & R.-L. Sheu, 2010. "Minimization of Isotonic Functions Composed of Fractions," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 581-601, September.
    19. Gruzdeva, Tatiana V. & Strekalovsky, Alexander S., 2018. "On solving the sum-of-ratios problem," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 260-269.
    20. Mojtaba Borza & Azmin Sham Rambely, 2021. "A Linearization to the Sum of Linear Ratios Programming Problem," Mathematics, MDPI, vol. 9(9), pages 1-10, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:146:y:2010:i:1:d:10.1007_s10957-010-9647-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.