IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v112y2002i1d10.1023_a1013072027218.html
   My bibliography  Save this article

Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem

Author

Listed:
  • H. P. Benson

    (University of Florida)

Abstract

This article presents a branch-and-bound algorithm for globally solving the nonlinear sum of ratios problem (P). The algorithm economizes the required computations by conducting the branch-and-bound search in ℛp, rather than in ℛn, where p is the number of ratios in the objective function of problem (P) and n is the number of decision variables in problem (P). To implement the algorithm, the main computations involve solving a sequence of convex programming problems for which standard algorithms are available.

Suggested Citation

  • H. P. Benson, 2002. "Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 1-29, January.
  • Handle: RePEc:spr:joptap:v:112:y:2002:i:1:d:10.1023_a:1013072027218
    DOI: 10.1023/A:1013072027218
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1013072027218
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1013072027218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. P. Benson, 2010. "Branch-and-Bound Outer Approximation Algorithm for Sum-of-Ratios Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 1-18, July.
    2. Kexin Yin & Xiao Fang & Bintong Chen & Olivia R. Liu Sheng, 2023. "Diversity Preference-Aware Link Recommendation for Online Social Networks," Information Systems Research, INFORMS, vol. 34(4), pages 1398-1414, December.
    3. Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
    4. Peiping Shen & Yuan Ma & Yongqiang Chen, 2011. "Global optimization for the generalized polynomial sum of ratios problem," Journal of Global Optimization, Springer, vol. 50(3), pages 439-455, July.
    5. Gruzdeva, Tatiana V. & Strekalovsky, Alexander S., 2018. "On solving the sum-of-ratios problem," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 260-269.
    6. Ashtiani, Alireza M. & Ferreira, Paulo A.V., 2015. "A branch-and-cut algorithm for a class of sum-of-ratios problems," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 596-608.
    7. Mojtaba Borza & Azmin Sham Rambely, 2021. "A Linearization to the Sum of Linear Ratios Programming Problem," Mathematics, MDPI, vol. 9(9), pages 1-10, April.
    8. Takahito Kuno & Toshiyuki Masaki, 2013. "A practical but rigorous approach to sum-of-ratios optimization in geometric applications," Computational Optimization and Applications, Springer, vol. 54(1), pages 93-109, January.
    9. YongJin Kim & YunChol Jong & JinWon Yu, 2021. "A parametric solution method for a generalized fractional programming problem," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(4), pages 971-989, December.
    10. Ruan, N. & Gao, D.Y., 2015. "Global solutions to fractional programming problem with ratio of nonconvex functions," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 66-72.
    11. J.-Y. Lin & S. Schaible & R.-L. Sheu, 2010. "Minimization of Isotonic Functions Composed of Fractions," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 581-601, September.
    12. Dey, Shibshankar & Kim, Cheolmin & Mehrotra, Sanjay, 2024. "An algorithm for stochastic convex-concave fractional programs with applications to production efficiency and equitable resource allocation," European Journal of Operational Research, Elsevier, vol. 315(3), pages 980-990.
    13. Mirjam Dür & Charoenchai Khompatraporn & Zelda Zabinsky, 2007. "Solving fractional problems with dynamic multistart improving hit-and-run," Annals of Operations Research, Springer, vol. 156(1), pages 25-44, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:112:y:2002:i:1:d:10.1023_a:1013072027218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.