IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v320y2025i2p433-447.html
   My bibliography  Save this article

A framework for integrated resource planning in surgical clinics

Author

Listed:
  • Bovim, Thomas Reiten
  • Gullhav, Anders N.
  • Andersson, Henrik
  • Riise, Atle

Abstract

The problem under study is based on the challenges faced by the Orthopaedic Clinic at St. Olav’s Hospital in Trondheim, Norway. Variations in demand and supply cause fluctuating waiting lists, and it is challenging to level the activities between the clinic’s two units, the outpatient clinic and the operating theater, to obtain short waiting times for all activities. Based on these challenges, we describe and present a planning problem referred to as the Long-term Master Scheduling Problem (LMSP), where the objective is to construct an integrated Long-term Master Schedule (LMS) that facilitates short waiting times in both units. The LMS can be separated into two schedules, one cyclic high-level schedule, and one non-cyclic low-level schedule. The demand for outpatient clinic consultations and surgeries is stochastic, as are the waiting lists. To account for this, we propose a planning framework consisting of an optimization model to solve the LMSP, and a two-level planning procedure. In the planning procedure, we first solve the LMSP to construct the LMS for the upcoming planning horizon. Then, to adjust to the fluctuating waiting lists, we periodically refine the low-level schedule by solving a constrained LMSP. We also develop a simulation-based evaluation procedure to evaluate the planning framework in a real-life setting and use this to investigate different planning strategies. We find that imposing flexible, dynamic and agile planning strategies improve waiting time outcomes and patient throughput. Furthermore, combining the strategies yields additive improvements.

Suggested Citation

  • Bovim, Thomas Reiten & Gullhav, Anders N. & Andersson, Henrik & Riise, Atle, 2025. "A framework for integrated resource planning in surgical clinics," European Journal of Operational Research, Elsevier, vol. 320(2), pages 433-447.
  • Handle: RePEc:eee:ejores:v:320:y:2025:i:2:p:433-447
    DOI: 10.1016/j.ejor.2024.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724006441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.08.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alessandro Agnetis & Alberto Coppi & Matteo Corsini & Gabriella Dellino & Carlo Meloni & Marco Pranzo, 2014. "A decomposition approach for the combined master surgical schedule and surgical case assignment problems," Health Care Management Science, Springer, vol. 17(1), pages 49-59, March.
    2. P T Vanberkel & R J Boucherie & E W Hans & J L Hurink & W A M van Lent & W H van Harten, 2011. "An exact approach for relating recovering surgical patient workload to the master surgical schedule," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1851-1860, October.
    3. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    4. Corine Laan & Maartje van de Vrugt & Jan Olsman & Richard J. Boucherie, 2018. "Static and dynamic appointment scheduling to improve patient access time," Health Systems, Taylor & Francis Journals, vol. 7(2), pages 148-159, May.
    5. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.
    6. Fügener, Andreas & Hans, Erwin W. & Kolisch, Rainer & Kortbeek, Nikky & Vanberkel, Peter T., 2014. "Master surgery scheduling with consideration of multiple downstream units," European Journal of Operational Research, Elsevier, vol. 239(1), pages 227-236.
    7. Thomas Schneider, A.J. & Theresia van Essen, J. & Carlier, Mijke & Hans, Erwin W., 2020. "Scheduling surgery groups considering multiple downstream resources," European Journal of Operational Research, Elsevier, vol. 282(2), pages 741-752.
    8. Peter J H Hulshof & Nikky Kortbeek & Richard J Boucherie & Erwin W Hans & Piet J M Bakker, 2012. "Taxonomic classification of planning decisions in health care: a structured review of the state of the art in OR/MS," Health Systems, Taylor & Francis Journals, vol. 1(2), pages 129-175, December.
    9. P T Vanberkel & R J Boucherie & E W Hans & J L Hurink & W A M van Lent & W H van Harten, 2011. "An exact approach for relating recovering surgical patient workload to the master surgical schedule," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1851-1860, October.
    10. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steffen Heider & Jan Schoenfelder & Thomas Koperna & Jens O. Brunner, 2022. "Balancing control and autonomy in master surgery scheduling: Benefits of ICU quotas for recovery units," Health Care Management Science, Springer, vol. 25(2), pages 311-332, June.
    2. Loïc Deklerck & Babak Akbarzadeh & Broos Maenhout, 2022. "Constructing and evaluating a master surgery schedule using a service-level approach," Operational Research, Springer, vol. 22(4), pages 3663-3711, September.
    3. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    4. Zhaohui Li & Haiyue Yu & Zhaowei Zhou, 2024. "Scheduling of elective operations with coordinated utilization of hospital beds and operating rooms," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-29, July.
    5. van den Broek d’Obrenan, Anne & Ridder, Ad & Roubos, Dennis & Stougie, Leen, 2020. "Minimizing bed occupancy variance by scheduling patients under uncertainty," European Journal of Operational Research, Elsevier, vol. 286(1), pages 336-349.
    6. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.
    7. Şeyda Gür & Tamer Eren & Hacı Mehmet Alakaş, 2019. "Surgical Operation Scheduling with Goal Programming and Constraint Programming: A Case Study," Mathematics, MDPI, vol. 7(3), pages 1-24, March.
    8. Rachuba, Sebastian & Imhoff, Lisa & Werners, Brigitte, 2022. "Tactical blueprints for surgical weeks – An integrated approach for operating rooms and intensive care units," European Journal of Operational Research, Elsevier, vol. 298(1), pages 243-260.
    9. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    10. Anjomshoa, Hamideh & Dumitrescu, Irina & Lustig, Irvin & Smith, Olivia J., 2018. "An exact approach for tactical planning and patient selection for elective surgeries," European Journal of Operational Research, Elsevier, vol. 268(2), pages 728-739.
    11. Xiangyong Li & N. Rafaliya & M. Fazle Baki & Ben A. Chaouch, 2017. "Scheduling elective surgeries: the tradeoff among bed capacity, waiting patients and operating room utilization using goal programming," Health Care Management Science, Springer, vol. 20(1), pages 33-54, March.
    12. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    13. Brittney Benchoff & Candace Arai Yano & Alexandra Newman, 2017. "Kaiser Permanente Oakland Medical Center Optimizes Operating Room Block Schedule for New Hospital," Interfaces, INFORMS, vol. 47(3), pages 214-229, June.
    14. Koppka, Lisa & Wiesche, Lara & Schacht, Matthias & Werners, Brigitte, 2018. "Optimal distribution of operating hours over operating rooms using probabilities," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1156-1171.
    15. Mariana Oliveira & Filippo Visintin & Daniel Santos & Inês Marques, 2022. "Flexible master surgery scheduling: combining optimization and simulation in a rolling horizon approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 824-858, December.
    16. Bovim, Thomas Reiten & Christiansen, Marielle & Gullhav, Anders N. & Range, Troels Martin & Hellemo, Lars, 2020. "Stochastic master surgery scheduling," European Journal of Operational Research, Elsevier, vol. 285(2), pages 695-711.
    17. Grigory Korzhenevich & Anne Zander, 2024. "Leveraging the potential of the German operating room benchmarking initiative for planning: A ready-to-use surgical process data set," Health Care Management Science, Springer, vol. 27(3), pages 328-351, September.
    18. Thomas Schneider, A.J. & Theresia van Essen, J. & Carlier, Mijke & Hans, Erwin W., 2020. "Scheduling surgery groups considering multiple downstream resources," European Journal of Operational Research, Elsevier, vol. 282(2), pages 741-752.
    19. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.
    20. Babak Akbarzadeh & Ghasem Moslehi & Mohammad Reisi-Nafchi & Broos Maenhout, 2020. "A diving heuristic for planning and scheduling surgical cases in the operating room department with nurse re-rostering," Journal of Scheduling, Springer, vol. 23(2), pages 265-288, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:320:y:2025:i:2:p:433-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.