IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v47y2015i11p1267-1286.html
   My bibliography  Save this article

Online appointment sequencing and scheduling

Author

Listed:
  • S. Ayca Erdogan
  • Alexander Gose
  • Brian T. Denton

Abstract

We formulate and solve a new stochastic integer programming model for dynamic sequencing and scheduling of appointments to a single stochastic server. We assume that service durations and the number of customers to be served on a particular day are uncertain. Customers are sequenced and scheduled dynamically (online) one at a time as they request appointments. We present a two-stage stochastic mixed integer program that uses a novel set of non-anticipativity constraints to capture the dynamic multi-stage nature of appointment requests as well as the sequencing of customers. We describe several ways to improve the computational efficiency of decomposition methods to solve our model. We also present some theoretical findings based on small problems to help motivate decision rules for larger problems. Our numerical experiments provide insights into optimal sequencing and scheduling decisions and the performance of the solution methods we propose.

Suggested Citation

  • S. Ayca Erdogan & Alexander Gose & Brian T. Denton, 2015. "Online appointment sequencing and scheduling," IISE Transactions, Taylor & Francis Journals, vol. 47(11), pages 1267-1286, November.
  • Handle: RePEc:taf:uiiexx:v:47:y:2015:i:11:p:1267-1286
    DOI: 10.1080/0740817X.2015.1011355
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2015.1011355
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2015.1011355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thierry Garaix & Salim Rostami & Xiaolan Xie, 2020. "Daily outpatient chemotherapy appointment scheduling with random deferrals," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 129-153, March.
    2. Ilke Bakir & Natashia Boland & Brian Dandurand & Alan Erera, 2020. "Sampling Scenario Set Partition Dual Bounds for Multistage Stochastic Programs," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 145-163, January.
    3. Eduardo PĂ©rez, 2022. "An Appointment Planning Algorithm for Reducing Patient Check-In Waiting Times in Multispecialty Outpatient Clinics," SN Operations Research Forum, Springer, vol. 3(3), pages 1-22, September.
    4. Dongyang Wang & Kumar Muthuraman & Douglas Morrice, 2019. "Coordinated Patient Appointment Scheduling for a Multistation Healthcare Network," Operations Research, INFORMS, vol. 67(3), pages 599-618, May.
    5. Youngbum Hur & Jonathan F. Bard & Douglas J. Morrice, 2021. "Appointment scheduling at a multidisciplinary outpatient clinic using stochastic programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 134-155, February.
    6. Bowen Pang & Xiaolei Xie & Feng Ju & James Pipe, 2022. "A dynamic sequential decision-making model on MRI real-time scheduling with simulation-based optimization," Health Care Management Science, Springer, vol. 25(3), pages 426-440, September.
    7. Hesaraki, Alireza F. & Dellaert, Nico P. & de Kok, Ton, 2019. "Generating outpatient chemotherapy appointment templates with balanced flowtime and makespan," European Journal of Operational Research, Elsevier, vol. 275(1), pages 304-318.
    8. Alexander H. Gose & Brian T. Denton, 2016. "Sequential Bounding Methods for Two-Stage Stochastic Programs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 351-369, May.
    9. Dogru, Ali K. & Melouk, Sharif H., 2019. "Adaptive appointment scheduling for patient-centered medical homes," Omega, Elsevier, vol. 85(C), pages 166-181.
    10. Sharan Srinivas & A. Ravi Ravindran, 2020. "Designing schedule configuration of a hybrid appointment system for a two-stage outpatient clinic with multiple servers," Health Care Management Science, Springer, vol. 23(3), pages 360-386, September.
    11. Tito Homem-de-Mello & Qingxia Kong & Rodrigo Godoy-Barba, 2022. "A Simulation Optimization Approach for the Appointment Scheduling Problem with Decision-Dependent Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2845-2865, September.
    12. Deceuninck, Matthias & Fiems, Dieter & De Vuyst, Stijn, 2018. "Outpatient scheduling with unpunctual patients and no-shows," European Journal of Operational Research, Elsevier, vol. 265(1), pages 195-207.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:47:y:2015:i:11:p:1267-1286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.