IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v1y1997i3d10.1023_a1009776309890.html
   My bibliography  Save this article

Decision Support for Airline Schedule Planning

Author

Listed:
  • Dennis F.X. Mathaisel

    (MIT
    Babson College)

Abstract

Since the 1950s, the operations research community has developed a large number of computer models to aid in the solution of airline scheduling problems. One notable characteristic of these contributions is that each algorithm was developed with its own input and output structures, user interface, and hardware and software requirements. The result is that many of these contributions are under-utilized because they are cumbersome to use, not integrated with the other airline's systems, and not connected across all functions of the airline (from planning to operations control). What was needed to make these contributions effective was a scheduling “environment” with a systematic interaction between the human, standardized databases across all functions of the airline, powerful desktop workstations for decision support, a standardized interactive graphical user interface for schedule editing, and the operations research techniques for optimization. This paper reports on the application of the integration of computer science and operations research in a decision support system for airline schedule planning. The application integrates a graphical user interface and the database with the schedule optimization algorithms.

Suggested Citation

  • Dennis F.X. Mathaisel, 1997. "Decision Support for Airline Schedule Planning," Journal of Combinatorial Optimization, Springer, vol. 1(3), pages 251-275, October.
  • Handle: RePEc:spr:jcomop:v:1:y:1997:i:3:d:10.1023_a:1009776309890
    DOI: 10.1023/A:1009776309890
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1009776309890
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1009776309890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. S. Mangoubi & Dennis F. X. Mathaisel, 1985. "Optimizing Gate Assignments at Airport Terminals," Transportation Science, INFORMS, vol. 19(2), pages 173-188, May.
    2. Robert Richardson, 1976. "An Optimization Approach to Routing Aircraft," Transportation Science, INFORMS, vol. 10(1), pages 52-71, February.
    3. Karla L. Hoffman & Manfred Padberg, 1993. "Solving Airline Crew Scheduling Problems by Branch-and-Cut," Management Science, INFORMS, vol. 39(6), pages 657-682, June.
    4. Thomas A. Feo & Jonathan F. Bard, 1989. "Flight Scheduling and Maintenance Base Planning," Management Science, INFORMS, vol. 35(12), pages 1415-1432, December.
    5. Ahmad I. Z. Jarrah & Gang Yu & Nirup Krishnamurthy & Ananda Rakshit, 1993. "A Decision Support Framework for Airline Flight Cancellations and Delays," Transportation Science, INFORMS, vol. 27(3), pages 266-280, August.
    6. Jeph Abara, 1989. "Applying Integer Linear Programming to the Fleet Assignment Problem," Interfaces, INFORMS, vol. 19(4), pages 20-28, August.
    7. Ananda Rakshit & Nirup Krishnamurthy & Gang Yu, 1996. "System Operations Advisor: A Real-Time Decision Support System for Managing Airline Operations at United Airlines," Interfaces, INFORMS, vol. 26(2), pages 50-58, April.
    8. Radhika Subramanian & Richard P. Scheff & John D. Quillinan & D. Steve Wiper & Roy E. Marsten, 1994. "Coldstart: Fleet Assignment at Delta Air Lines," Interfaces, INFORMS, vol. 24(1), pages 104-120, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    2. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    3. Cynthia Barnhart & Amy Cohn, 2004. "Airline Schedule Planning: Accomplishments and Opportunities," Manufacturing & Service Operations Management, INFORMS, vol. 6(1), pages 3-22, November.
    4. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    5. Sriram, Chellappan & Haghani, Ali, 2003. "An optimization model for aircraft maintenance scheduling and re-assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 29-48, January.
    6. Hanif D. Sherali & Ebru K. Bish & Xiaomei Zhu, 2005. "Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment," Transportation Science, INFORMS, vol. 39(3), pages 349-366, August.
    7. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    8. F M Zeghal & M Haouari & H D Sherali & N Aissaoui, 2011. "Flexible aircraft fleeting and routing at TunisAir," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 368-380, February.
    9. Joyce W. Yen & John R. Birge, 2006. "A Stochastic Programming Approach to the Airline Crew Scheduling Problem," Transportation Science, INFORMS, vol. 40(1), pages 3-14, February.
    10. Haouari, Mohamed & Aissaoui, Najla & Mansour, Farah Zeghal, 2009. "Network flow-based approaches for integrated aircraft fleeting and routing," European Journal of Operational Research, Elsevier, vol. 193(2), pages 591-599, March.
    11. Moudani, Walid El & Mora-Camino, Félix, 2000. "A dynamic approach for aircraft assignment and maintenance scheduling by airlines," Journal of Air Transport Management, Elsevier, vol. 6(4), pages 233-237.
    12. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    13. Gang Yu & Michael Argüello & Gao Song & Sandra M. McCowan & Anna White, 2003. "A New Era for Crew Recovery at Continental Airlines," Interfaces, INFORMS, vol. 33(1), pages 5-22, February.
    14. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    15. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    16. Yan, Shangyao & Young, Hwei-Fwa, 1996. "A decision support framework for multi-fleet routing and multi-stop flight scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 379-398, September.
    17. Sciau, Jean-Baptiste & Goyon, Agathe & Sarazin, Alexandre & Bascans, Jérémy & Prud’homme, Charles & Lorca, Xavier, 2024. "Using constraint programming to address the operational aircraft line maintenance scheduling problem," Journal of Air Transport Management, Elsevier, vol. 115(C).
    18. Ovidiu Listes & Rommert Dekker, 2005. "A Scenario Aggregation–Based Approach for Determining a Robust Airline Fleet Composition for Dynamic Capacity Allocation," Transportation Science, INFORMS, vol. 39(3), pages 367-382, August.
    19. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    20. Obrad Babić & Milica Kalić & Goran Pavković & Slavica Dožić & Mirjana Čangalović, 2010. "Heuristic approach to the airline schedule disturbances problem," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(3), pages 257-280, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:1:y:1997:i:3:d:10.1023_a:1009776309890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.