IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v19y1985i2p173-188.html
   My bibliography  Save this article

Optimizing Gate Assignments at Airport Terminals

Author

Listed:
  • R. S. Mangoubi

    (Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts)

  • Dennis F. X. Mathaisel

    (Massachusetts Institute of Technology, Cambridge, Massachusetts Babson College, Babson Park, Massachusetts)

Abstract

The airport flight-to-gate assignment problem is solved using two methods: (1) a linear programming relaxation of an integer program formulation and (2) a heuristic. The objective is to minimize passenger walking distances within the airport terminal area through a judicious gate assignment policy. An actual flight schedule for an average day at Toronto International Airport is used to compare existing walking distances, obtained from the original assignment, with results from the two methods. The results indicated that the original assignment had a 32% higher average per passenger walking distance than the minimum possible distance given by the LP solution. The heuristic’s performance was near optimal; it gave an average walking distance which was only 3.9% greater than the minimum. Computation times for the heuristic are 3.4 CPU seconds per run, while the linear program consumes 386 seconds per run on an IBM 370/168. In addition, if the heuristic is solved first and its solution is used as an initial feasible basis for the LP relaxation of the IP, the total CPU used to obtain optimality is reduced to 42 seconds.

Suggested Citation

  • R. S. Mangoubi & Dennis F. X. Mathaisel, 1985. "Optimizing Gate Assignments at Airport Terminals," Transportation Science, INFORMS, vol. 19(2), pages 173-188, May.
  • Handle: RePEc:inm:ortrsc:v:19:y:1985:i:2:p:173-188
    DOI: 10.1287/trsc.19.2.173
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.19.2.173
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.19.2.173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guépet, J. & Acuna-Agost, R. & Briant, O. & Gayon, J.P., 2015. "Exact and heuristic approaches to the airport stand allocation problem," European Journal of Operational Research, Elsevier, vol. 246(2), pages 597-608.
    2. Xu, Liang & Zhang, Chao & Xiao, Feng & Wang, Fan, 2017. "A robust approach to airport gate assignment with a solution-dependent uncertainty budget," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 458-478.
    3. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    4. Bert Dijk & Bruno F. Santos & Joao P. Pita, 2019. "The recoverable robust stand allocation problem: a GRU airport case study," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 615-639, September.
    5. Brunetta, Lorenzo & Righi, Luca & Andreatta, Giovanni, 1999. "An operations research model for the evaluation of an airport terminal: SLAM (simple landside aggregate model)," Journal of Air Transport Management, Elsevier, vol. 5(3), pages 161-175.
    6. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2022. "Learning-driven feasible and infeasible tabu search for airport gate assignment," European Journal of Operational Research, Elsevier, vol. 302(1), pages 172-186.
    7. H Ding & A Lim & B Rodrigues & Y Zhu, 2004. "New heuristics for over-constrained flight to gate assignments," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(7), pages 760-768, July.
    8. Amadeo Ascó, 2016. "An Analysis of Robustness Approaches for the Airport Baggage Sorting Station Assignment Problem," Journal of Optimization, Hindawi, vol. 2016, pages 1-19, September.
    9. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2007. "Flight gate scheduling: State-of-the-art and recent developments," Omega, Elsevier, vol. 35(3), pages 326-334, June.
    10. Gülesin Sena Daş & Fatma Gzara, 2024. "Column generation based solution for bi-objective gate assignment problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 123-151, August.
    11. Kim, Junyoung & Goo, Byungju & Roh, Youngjoo & Lee, Chungmok & Lee, Kyungsik, 2023. "A branch-and-price approach for airport gate assignment problem with chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 1-26.
    12. Drexl, Andreas & Nikulin, Yury, 2005. "Multicriteria airport gate assignment and pareto simulated annealing," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 586, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Dennis F.X. Mathaisel, 1997. "Decision Support for Airline Schedule Planning," Journal of Combinatorial Optimization, Springer, vol. 1(3), pages 251-275, October.
    14. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2005. "Flight gate scheduling: State-of-the-art and recent developments," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 584, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    15. John J. Bartholdi & Kevin R. Gue, 2000. "Reducing Labor Costs in an LTL Crossdocking Terminal," Operations Research, INFORMS, vol. 48(6), pages 823-832, December.
    16. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2012. "Flight gate scheduling with respect to a reference schedule," Annals of Operations Research, Springer, vol. 194(1), pages 177-187, April.
    17. Yin, Suwan & Han, Ke & Ochieng, Washington Yotto & Sanchez, Daniel Regueiro, 2022. "Joint apron-runway assignment for airport surface operations," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 76-100.
    18. Haghani, Ali & Chen, Min-Ching, 1998. "Optimizing gate assignments at airport terminals," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(6), pages 437-454, August.
    19. Zhang, Dong & Klabjan, Diego, 2017. "Optimization for gate re-assignment," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 260-284.
    20. Bolat, Ahmet, 2000. "Procedures for providing robust gate assignments for arriving aircrafts," European Journal of Operational Research, Elsevier, vol. 120(1), pages 63-80, January.
    21. Karsu, Özlem & Azizoğlu, Meral & Alanlı, Kerem, 2021. "Exact and heuristic solution approaches for the airport gate assignment problem," Omega, Elsevier, vol. 103(C).
    22. Hu, Rong & Wang, Deyun & Feng, Huilin & Zhang, Junfeng & Pan, Xiaoran & Deng, Songwu, 2024. "Joint gate-runway scheduling considering carbon emissions, airport noise and ground-air coordination," Journal of Air Transport Management, Elsevier, vol. 116(C).
    23. Skorupski, Jacek & Żarów, Piotr, 2021. "Dynamic management of aircraft stand allocation," Journal of Air Transport Management, Elsevier, vol. 90(C).
    24. Bagamanova, Margarita & Mota, Miguel Mujica, 2020. "A multi-objective optimization with a delay-aware component for airport stand allocation," Journal of Air Transport Management, Elsevier, vol. 83(C).
    25. Şeker, Merve & Noyan, Nilay, 2012. "Stochastic optimization models for the airport gate assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 438-459.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:19:y:1985:i:2:p:173-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.