IDEAS home Printed from https://ideas.repec.org/a/spr/jbecon/v92y2022i4d10.1007_s11573-021-01068-3.html
   My bibliography  Save this article

Profit uplift modeling for direct marketing campaigns: approaches and applications for online shops

Author

Listed:
  • Daniel Baier

    (University of Bayreuth)

  • Björn Stöcker

    (BAUR Versand)

Abstract

In order to select “best” customers for a direct marketing campaign, response models are widespread: a sample of customers receives an ad, a catalog, a sample pack, or a discount offer on a test basis. Then, their responses (e.g., website visits, conversions, or revenues) are used to build a predictive model. Finally, this model is applied to all customers in order to select “best” ones for the campaign. However, up to now, only models that reflect website visits, conversions, or revenues have been proposed. In this paper, we discuss the shortcomings of these traditional approaches and propose profit uplift modeling appoaches based on one-stage ordinary regression and random forests as well as two-stage Heckman sample selection and zero-inflated negative binomial regression for parameter estimation. The new approaches demonstrate superiority to the traditional ones when applied to real-world datasets. One dataset reflects recent discount offers of a large online fashion retailer. The other is the well-known Hillstrom dataset that describes two Email campaigns.

Suggested Citation

  • Daniel Baier & Björn Stöcker, 2022. "Profit uplift modeling for direct marketing campaigns: approaches and applications for online shops," Journal of Business Economics, Springer, vol. 92(4), pages 645-673, May.
  • Handle: RePEc:spr:jbecon:v:92:y:2022:i:4:d:10.1007_s11573-021-01068-3
    DOI: 10.1007/s11573-021-01068-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11573-021-01068-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11573-021-01068-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
    2. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    3. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    4. Martin Ridout & John Hinde & Clarice G. B. Demétrio, 2001. "A Score Test for Testing a Zero‐Inflated Poisson Regression Model Against Zero‐Inflated Negative Binomial Alternatives," Biometrics, The International Biometric Society, vol. 57(1), pages 219-223, March.
    5. Gubela, Robin M. & Lessmann, Stefan & Jaroszewicz, Szymon, 2020. "Response transformation and profit decomposition for revenue uplift modeling," European Journal of Operational Research, Elsevier, vol. 283(2), pages 647-661.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boncinelli, Fabio & Bartolini, Fabio & Casini, Leonardo, 2018. "Structural factors of labour allocation for farm diversification activities," Land Use Policy, Elsevier, vol. 71(C), pages 204-212.
    2. Silva João M. C. Santos & Tenreyro Silvana & Windmeijer Frank, 2015. "Testing Competing Models for Non-negative Data with Many Zeros," Journal of Econometric Methods, De Gruyter, vol. 4(1), pages 29-46, January.
    3. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    4. Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
    5. Abbas Moghimbeigi & Mohammed Reza Eshraghian & Kazem Mohammad & Brian Mcardle, 2008. "Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1193-1202.
    6. Bryan T. Kelly & Asaf Manela & Alan Moreira, 2019. "Text Selection," NBER Working Papers 26517, National Bureau of Economic Research, Inc.
    7. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    8. Julieta Trías, 2004. "Determinantes de la Utilización de los Servicios de Salud: El caso de los niños en la Argentina," CEDLAS, Working Papers 0009, CEDLAS, Universidad Nacional de La Plata.
    9. Massimiliano Bratti & Alfonso Miranda, 2010. "Endogenous Treatment Effects for Count Data Models with Sample Selection or Endogenous Participation," DoQSS Working Papers 10-05, Quantitative Social Science - UCL Social Research Institute, University College London, revised 10 Dec 2010.
    10. Jiang, Yuan & House, Lisa A., 2017. "Comparison of the Performance of Count Data Models under Different Zero-Inflation Scenarios Using Simulation Studies," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258342, Agricultural and Applied Economics Association.
    11. Livio Finos & Fortunato Pesarin, 2020. "On zero-inflated permutation testing and some related problems," Statistical Papers, Springer, vol. 61(5), pages 2157-2174, October.
    12. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    13. Bayart, Caroline & Bonnel, Patrick & Havet, Nathalie, 2018. "Daily (im)mobility behaviours in France: An application of hurdle models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 456-467.
    14. Goic, Marcel & Rojas, Andrea & Saavedra, Ignacio, 2021. "The Effectiveness of Triggered Email Marketing in Addressing Browse Abandonments," Journal of Interactive Marketing, Elsevier, vol. 55(C), pages 118-145.
    15. Huber, Martin & Meier, Jonas & Wallimann, Hannes, 2022. "Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 22-39.
    16. Sirchenko Andrei, 2012. "A model for ordinal responses with an application to policy interest rate," EERC Working Paper Series 12/13e, EERC Research Network, Russia and CIS.
    17. Kenya Valeria M. S. Noronha & M™nica Viegas Andrade, 2002. "Social inequality in the access to healthcare services in Brazil," Textos para Discussão Cedeplar-UFMG td172, Cedeplar, Universidade Federal de Minas Gerais.
    18. Xiaodi Xie, 1997. "Children and female labour supply behaviour," Applied Economics, Taylor & Francis Journals, vol. 29(10), pages 1303-1310.
    19. Mark N. Harris & Xueyan Zhao, 2004. "Modelling Tobacco Consumption with a Zero-Inflated Ordered Probit Model," Monash Econometrics and Business Statistics Working Papers 14/04, Monash University, Department of Econometrics and Business Statistics.
    20. Wei-Wen Hsu & David Todem & Kyungmann Kim, 2015. "Adjusted Supremum Score-Type Statistics for Evaluating Non-Standard Hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 746-759, September.

    More about this item

    Keywords

    Uplift modeling; Heckman sample selection model; Zero-inflated negative binomial regression; Random forests; Online shops;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
    • M37 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Advertising

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbecon:v:92:y:2022:i:4:d:10.1007_s11573-021-01068-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.