IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i3p746-759.html
   My bibliography  Save this article

Adjusted Supremum Score-Type Statistics for Evaluating Non-Standard Hypotheses

Author

Listed:
  • Wei-Wen Hsu
  • David Todem
  • Kyungmann Kim

Abstract

type="main" xml:id="sjos12134-abs-0001"> Supremum score test statistics are often used to evaluate hypotheses with unidentifiable nuisance parameters under the null hypothesis. Although these statistics provide an attractive framework to address non-identifiability under the null hypothesis, little attention has been paid to their distributional properties in small to moderate sample size settings. In situations where there are identifiable nuisance parameters under the null hypothesis, these statistics may behave erratically in realistic samples as a result of a non-negligible bias induced by substituting these nuisance parameters by their estimates under the null hypothesis. In this paper, we propose an adjustment to the supremum score statistics by subtracting the expected bias from the score processes and show that this adjustment does not alter the limiting null distribution of the supremum score statistics. Using a simple example from the class of zero-inflated regression models for count data, we show empirically and theoretically that the adjusted tests are superior in terms of size and power. The practical utility of this methodology is illustrated using count data in HIV research.

Suggested Citation

  • Wei-Wen Hsu & David Todem & Kyungmann Kim, 2015. "Adjusted Supremum Score-Type Statistics for Evaluating Non-Standard Hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 746-759, September.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:3:p:746-759
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12134
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    2. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    3. Francq, Christian & Horvath, Lajos & Zakoïan, Jean-Michel, 2010. "Sup-Tests For Linearity In A General Nonlinear Ar(1) Model," Econometric Theory, Cambridge University Press, vol. 26(4), pages 965-993, August.
    4. Rui Song & Haibo Zhou & Michael R. Kosorok, 2009. "A note on semiparametric efficient inference for two-stage outcome-dependent sampling with a continuous outcome," Biometrika, Biometrika Trust, vol. 96(1), pages 221-228.
    5. Martin Ridout & John Hinde & Clarice G. B. Demétrio, 2001. "A Score Test for Testing a Zero‐Inflated Poisson Regression Model Against Zero‐Inflated Negative Binomial Alternatives," Biometrics, The International Biometric Society, vol. 57(1), pages 219-223, March.
    6. Daniel B. Hall, 2000. "Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study," Biometrics, The International Biometric Society, vol. 56(4), pages 1030-1039, December.
    7. Jansakul, N. & Hinde, J. P., 2002. "Score Tests for Zero-Inflated Poisson Models," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 75-96, July.
    8. D. Y. Lin & L. J. Wei & Z. Ying, 2002. "Model-Checking Techniques Based on Cumulative Residuals," Biometrics, The International Biometric Society, vol. 58(1), pages 1-12, March.
    9. David Todem & Wei-Wen Hsu & KyungMann Kim, 2012. "On the Efficiency of Score Tests for Homogeneity in Two-Component Parametric Models for Discrete Data," Biometrics, The International Biometric Society, vol. 68(3), pages 975-982, September.
    10. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    11. Christian Ritz & Ib M. Skovgaard, 2005. "Likelihood ratio tests in curved exponential families with nuisance parameters present only under the alternative," Biometrika, Biometrika Trust, vol. 92(3), pages 507-517, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas Moghimbeigi & Mohammed Reza Eshraghian & Kazem Mohammad & Brian Mcardle, 2008. "Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1193-1202.
    2. Liu, Juxin & Ma, Yanyuan & Johnstone, Jill, 2020. "A goodness-of-fit test for zero-inflated Poisson mixed effects models in tree abundance studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    3. Moghimbeigi, Abbas & Eshraghian, Mohammad Reza & Mohammad, Kazem & McArdle, Brian, 2009. "A score test for zero-inflation in multilevel count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1239-1248, February.
    4. Xie, Feng-Chang & Wei, Bo-Cheng & Lin, Jin-Guan, 2009. "Score tests for zero-inflated generalized Poisson mixed regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3478-3489, July.
    5. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    6. Livio Finos & Fortunato Pesarin, 2020. "On zero-inflated permutation testing and some related problems," Statistical Papers, Springer, vol. 61(5), pages 2157-2174, October.
    7. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    8. Lim, Hwa Kyung & Song, Juwon & Jung, Byoung Cheol, 2013. "Score tests for zero-inflation and overdispersion in two-level count data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 67-82.
    9. Yixuan Zou & Jan Hannig & Derek S. Young, 2021. "Generalized fiducial inference on the mean of zero-inflated Poisson and Poisson hurdle models," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-15, December.
    10. Wei‐Wen Hsu & David Todem & KyungMann Kim, 2016. "A sup‐score test for the cure fraction in mixture models for long‐term survivors," Biometrics, The International Biometric Society, vol. 72(4), pages 1348-1357, December.
    11. David Todem & Wei-Wen Hsu & KyungMann Kim, 2012. "On the Efficiency of Score Tests for Homogeneity in Two-Component Parametric Models for Discrete Data," Biometrics, The International Biometric Society, vol. 68(3), pages 975-982, September.
    12. Tian, Guo-Liang & Ma, Huijuan & Zhou, Yong & Deng, Dianliang, 2015. "Generalized endpoint-inflated binomial model," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 97-114.
    13. Lee, Keunbaik & Joo, Yongsung & Song, Joon Jin & Harper, Dee Wood, 2011. "Analysis of zero-inflated clustered count data: A marginalized model approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 824-837, January.
    14. Candelon, Bertrand & Lieb, Lenard, 2013. "Fiscal policy in good and bad times," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2679-2694.
    15. Albert J.F. Yang & William N. Trumbull & Chin Wei Yang & Bwo‐Nung Huang, 2011. "On The Relationship Between Military Expenditure, Threat, And Economic Growth: A Nonlinear Approach," Defence and Peace Economics, Taylor & Francis Journals, vol. 22(4), pages 449-457, April.
    16. Franses, Ph.H.B.F. & van Dijk, D.J.C., 2002. "A simple test for PPP among traded goods," Econometric Institute Research Papers EI 2002-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    18. Das, Ujjwal & Das, Kalyan, 2018. "Inference on zero inflated ordinal models with semiparametric link," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 104-115.
    19. Dang, Viet Anh & Kim, Minjoo & Shin, Yongcheol, 2014. "Asymmetric adjustment toward optimal capital structure: Evidence from a crisis," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 226-242.
    20. Christoph Rothe & Philipp Sibbertsen, 2006. "Phillips-Perron-type unit root tests in the nonlinear ESTAR framework," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(3), pages 439-456, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:3:p:746-759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.