IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v46y1993i2p181-192.html
   My bibliography  Save this article

Industrial applications of production planning with optimal electricity demand

Author

Listed:
  • Nilsson, K.
  • Söderström, M.

Abstract

The differentiation of the electricity tariff is a way to influence the electricity demand. Savings can be made when part of the electricity demand can be shifted to low-rate periods. However, the optimal production flow is often related to the electricity demand in a non-linear way. For an industry with an approximately linear electricity demand the optimal production schedule implies decreased production to yield a decreased electricity demand. A strongly non-linear electricity demand, on the other hand, may even imply an increased production to yield a decreased electricity demand. The optimal production schedules of three industrial cases are studied in response to two price constructions, represented as two differentiated tariffs.

Suggested Citation

  • Nilsson, K. & Söderström, M., 1993. "Industrial applications of production planning with optimal electricity demand," Applied Energy, Elsevier, vol. 46(2), pages 181-192.
  • Handle: RePEc:eee:appene:v:46:y:1993:i:2:p:181-192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0306-2619(93)90067-Y
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sven Schulz & Udo Buscher & Liji Shen, 2020. "Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices," Journal of Business Economics, Springer, vol. 90(9), pages 1315-1343, November.
    2. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    3. Gong, Mei, 2003. "Optimization of industrial energy systems by incorporating feedback loops into the MIND method," Energy, Elsevier, vol. 28(15), pages 1655-1669.
    4. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    5. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    6. Khan, Aftab Ahmed & Razzaq, Sohail & Khan, Asadullah & Khursheed, Fatima & Owais,, 2015. "HEMSs and enabled demand response in electricity market: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 773-785.
    7. Kiki Ayu & Akilu Yunusa-Kaltungo, 2020. "A Holistic Framework for Supporting Maintenance and Asset Management Life Cycle Decisions for Power Systems," Energies, MDPI, vol. 13(8), pages 1-32, April.
    8. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    10. Trygg, Louise & Amiri, Shahnaz, 2007. "European perspective on absorption cooling in a combined heat and power system - A case study of energy utility and industries in Sweden," Applied Energy, Elsevier, vol. 84(12), pages 1319-1337, December.
    11. Sjödin, Jörgen & Henning, Dag, 2004. "Calculating the marginal costs of a district-heating utility," Applied Energy, Elsevier, vol. 78(1), pages 1-18, May.
    12. Konstantin Biel & Christoph H. Glock, 2017. "Prerequisites of efficient decentralized waste heat recovery and energy storage in production planning," Journal of Business Economics, Springer, vol. 87(1), pages 41-72, January.
    13. Lee, Dasheng & Cheng, Chin-Chi, 2016. "Energy savings by energy management systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 760-777.
    14. Difs, Kristina & Trygg, Louise, 2009. "Pricing district heating by marginal cost," Energy Policy, Elsevier, vol. 37(2), pages 606-616, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:46:y:1993:i:2:p:181-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.